
http://oracle.com/javamagazine

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

AB
O

U
T

U
S

01

JA
VA

 T
EC

H
JA

VA
 IN

 A
CT

IO
N

CO
M

M
UN

IT
Y

blog

//table of contents /

7
Java in Action
INTERACTIVE
TV TAKES OFF
WITH JAVA
Globo TV brings
new capabilities to
Brazilian viewers.

38
Enterprise Java
RESOURCE
INJECTION
WITH
JAVA EE 6
Adam Bien shows
you how to mas-
ter annotations
and configured
resources.

45
Polyglot
Programmer
SCALA ON
THE JAVA
VIRTUAL
MACHINE
Dick Wall: What
Scala teaches
us about the
strengths and
limits of the JVM.

COMMUNITY
02
From the Editor
Justin Kestelyn introduces
Java Magazine.

03
Java Nation
News, events, and happenings
in the Java community.

JAVA IN ACTION
11
Sold on Java
Java provides a global IT
platform for Travelex Group.

JAVA TECH
14
New to Java
Getting Your Feet Wet
Learn how to create Java
classes, objects, and methods.

17
New to Java
Introduction to RESTful
Web Services
Max Bonbhel shows you how to
build RESTful Web services.

25
Java Architect
JDK 7 Will Change the
Way You Write Code—
Today!
Herb Schildt on how JDK 7
makes tedious tasks easier.

28
Java Architect
Dynamically Typed
Languages and the
invokedynamic
Instruction
Raymond Gallardo uses
invokedynamic to customize
linkages.

31
Rich Client
Using Adobe Flex and
JavaFX with JavaServer
Faces 2.0
Re Lai takes advantage of
new JSF features.

35
Rich Client
Why Automated Testing
for Web Apps?
A conversation with
Kevin Nilson.

42
Mobile and Embedded
Working with JSR-211:
Content Handler API
Vikram Goyal on problem
solving with CHAPI.

52
Fix This
Arun Gupta challenges
your coding skills.

20
Java Architect

SHOWTIME!
JAVA 7 IS HERE
The Java platform and ecosystem
finally move forward. Oracle’s Chief
Java Architect Mark Reinhold talks
about how Java SE 7 addresses new
trends in programming and hard-
ware architectures.COVER ART BY I-HUA CHEN

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

CO
M

M
U

N
IT

Y

02

JA
VA

 T
EC

H
AB

OU
T

US
JA

VA
 IN

 A
CT

IO
N

blog

//from the editor /

 elcome to the Premiere issue of Java Magazine, which we hope will become an important
part of the immense and still growing Java ecosystem.

The Java Magazine tagline, “By and for the Java community,” is reflective of its DNA. On the “for” side, the
publication is designed to serve the ecosystem in all its diversity: from the hands-on technical craftspeople
who make the language dance, to the decision-makers who place very expensive bets on strategic technol-
ogy platforms, to the learners and newcomers who are just getting a handle on why This Java Thing is so great.
People in all those categories will find something to like here.

Just as important, on the “by” side, experts from across the globe will be pitching in. In this issue, Java
Champions Adam Bien, Michael Kölling, Kevin Nilson, and Dick Wall have made contributions, and we’ll see
participation by other community figures in future issues. Maybe you’ll be one of them. (If you’re interested,
drop us a line.)

The whole thing is delivered in a highly interactive package, designed from the ground up to take full advan-
tage of its digital format. (If you were wondering if this project was a fun one for us,
you’d be right.)

If there’s anything I can leave you with, it’s this: Java Magazine is a work-in-
progress, and we need your help to make it better—whether from an editorial or a
design standpoint. So, explore this issue. Take your time with it. And when you’re
ready, send us a message with your thoughts.

We hope you enjoy reading Java Magazine just as much as we enjoyed making it.

Justin Kestelyn, Editor in Chief BIO

//send us your feedback /

We’ll review all
suggestions for future
improvements.
Depending on volume,
some messages may
not get a direct reply.

W

PHOTOGRAPH BY RICHARD MERCHÁN

YOUR
LOCAL JAVA

USER GROUP
NEEDS YOU

Find your JUG here

http://oracle.com/javamagazine
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.java.net/jugs/java-user-groups
javascript:var w=window.open('http://www.oraclejavamagazine-digital.com/javamagazine/misc/p2_video.html','_blank','left=500,top=50,width=400,height=250;location=no');
javascript:openPopup('newbio_p2')

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

CO
M

M
U

N
IT

Y

03

JA
VA

 T
EC

H
AB

OU
T

US
JA

VA
 IN

 A
CT

IO
N

blog

//java nation /

JAVA-BASED GAME WINS BIG
Congratulations to Swedish game devel-
oper Mojang for winning five awards for
its Java-based game Minecraft. The Game
Developers Choice Awards recognized
Minecraft with the Innovation Award, Best
Downloadable Game Award, and Best Debut
Game Award. The Independent Games
Festival awarded Minecraft the Audience
Award and the Seumas McNally Grand Prize.
Watch the fan-made trailer to see what the
game is all about.

Java 7 Goes Global
On July 7, Oracle hosted a global celebra-
tion of the imminent availability of Java
Platform, Standard Edition 7 (Java SE 7 or
Java 7). Community members were present
on three stages around the globe simultane-
ously for this event: at Oracle headquarters
in Redwood Shores, California; in London, England; and in São Paulo, Brazil.
Participants included representatives from Accenture, HP, IBM, the London Java
Community, Royal Bank of Scotland, Riot Games, SouJava, and Travelex—all of
whom shared their reasons why Java is critical to their success.

The Redwood Shores event included a general session with Adam Messinger,
vice president of development, Oracle Fusion Middleware. This was followed by
technical breakouts about key Java 7 improvements including language
enhancements (JSR-334: Project Coin), the new lightweight fork/join framework,
and support for dynamically typed languages (JSR-292: InvokeDynamic).

More than 200 Java 7 “tech session” kits were also distributed to Java user groups
in 59 countries for their meetings. The world is now ready for Java 7!

Get a look inside Minecraft,
an award-winning game
based on Java.

EVENTS
JAVAONE OCTOBER 2–6, SAN FRANCISCO, CALIFORNIA

The dates have been set, the conference tracks have been iden-
tified, the papers have been submitted, the final sessions list
has been selected, and the entertainment has been announced
(Sting, and Tom Petty and the Heartbreakers). Only one thing is
missing: your JavaOne 2011 registration.

Head to San Francisco in October to focus on the latest Java
technologies. Visit the JavaOne conference site for all the details.

You can follow the events leading up to JavaOne 2011 at the conference site, and via
the JavaOne Conference blog, the JavaOne Twitter feed, JavaOne on Facebook, JavaOne
on LinkedIn, the JavaOne Oracle Mix group, and Java.net.

AUGUST
PPPJ 2011
AUGUST 24–26, KONGENS
LYNGBY, DENMARK
The 9th International
Conference on the
Principles and Practice
of Programming in Java
brings together researchers,
teachers, practitioners, and
programmers who study or
work with the Java language
or its virtual machine.

Research Triangle
Software Symposium
AUGUST 27–29, RALEIGH,
NORTH CAROLINA
Hear about the latest
technologies and best
practices emerging in the
enterprise software devel-
opment space.

SEPTEMBER
JavaZone
SEPTEMBER 7–8,
OSLO, NORWAY
JavaZone is the biggest
meeting place for software
developers in Scandinavia
and a forum for knowl-
edge exchange among IT
professionals.

QCon
SEPTEMBER 10–11,
SÃO PAULO, BRAZIL
This international software
development conference
includes a track about the
various ways the Java plat-
form is being used indepen-
dent of the Java language.

OCTOBER
Silicon Valley Code Camp
OCTOBER 8–9, LOS ALTOS
HILLS, CALIFORNIA
At this community event,
developers learn from each
other. All are welcome.

GOTO
OCTOBER 10–12,
AARHUS, DENMARK
GOTO (formerly JAOO) is an
educational and networking
forum for software devel-
opers, IT architects, and
project managers.

BlackBerry DevCon
Americas
OCTOBER 18–20,
SAN FRANCISCO,
CALIFORNIA
This developer conference
showcases the latest inno-
vations with the BlackBerry
development platform.

PHOTOGRAPH BY ENRIQUE AGUIRRE

PHOTOGRAPH BY HARTMANN STUDIOS

http://oracle.com/javamagazine
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
http://mojang.com
http://www.gamechoiceawards.com/
http://www.gamechoiceawards.com/
http://www.igf.com
http://www.igf.com
http://www.youtube.com/watch?v=FaMTedT6P0I&feature=player_embedded
http://www.oracle.com/javaone/registration-173447.html
http://www.oracle.com/javaone/index.html
http://blogs.oracle.com/javaone/
http://twitter.com/JavaOneConf
http://www.facebook.com/javaone
http://www.linkedin.com/e/gis/1749197
https://mix.oracle.com/groups/20893
http://www.java.net
http://pppj2011.imm.dtu.dk/
http://nofluffjuststuff.com/conference/raleigh/2010/08/home
http://nofluffjuststuff.com/conference/raleigh/2010/08/home
http://jz11.java.no/news.html
http://www.qconsp.com/
http://siliconvalley-codecamp.com/about.aspx
http://gotocon.com/aarhus-2011/
http://blackberrydevcon.com/
http://blackberrydevcon.com/
javascript:openPopup('p3_youtube')

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

CO
M

M
U

N
IT

Y

04

JA
VA

 T
EC

H
AB

OU
T

US
JA

VA
 IN

 A
CT

IO
N

blog

//java nation /

JAVA USER GROUPS ON THE
JCP EXECUTIVE COMMITTEE
A promising new development for the Java Community Process
(JCP) Executive Committee is the recent election of SouJava and
the London Java Community as new members of the Standard/
Enterprise Edition Executive Committee. The 2011 Executive
Committee Special Elections placed SouJava, the Brazilian Java
Users Society, into a ratified Standard Edition/Enterprise Edition
seat, with representation by SouJava President BRUNO SOUZA.
Meanwhile, the London Java Community (LJC) won an open seat on
the same committee, with representation by BEN EVANS. LJC co-
leader MARTIJN VERBURG noted, “We are humbled by the trust that
the JCP members have given us and alongside the Brazilian JUG
[Java user group] . . . we look forward to representing the millions of
Java developers and users around the world.” The presence of JUGs
on the JCP Executive Committee has been widely applauded and
represents an important step toward greater openness and trans-
parency in the JCP. In other election news, Goldman Sachs won the
other ratified seat on the Standard/Enterprise Edition Executive
Committee and will be represented by John Weir. The open seat on
the Micro Edition Executive Committee went to Alex Terrazas.

First-Ever Facebook
Hacker Cup World
Champion Uses Java
Russian developer Petr Mitrichev,
who works in Java, was named the
first Facebook Hacker Cup World
Champion. The 25 finalists had
to solve three algorithmic prob-
lems—Party Time, Safest Place,
and Alien Game—in the fastest
possible time (under two hours).
Only three finalists submitted
answers to all three problems, and
Mitrichev was the only one to get
three correct answers. Read more
about Mitrichev and see the three
problems here.

LOW-RES FPO

PHOTOGRAPH BY MATT HARNACK

BEN EVANS’ PHOTOGRAPH BY CATHERINE CURRIE

LA
TE

NC
Y

IN
 M

IL
LI

SE
CO

ND
S 900

675

450

225

0

Tsunami

Blender

TWITTER SEARCH IS NOW THREE
TIMES FASTER THANKS TO JAVA!
In an attempt to reduce the number of times Twitter
users see the “fail whale,” Twitter has moved from
a Ruby on Rails front end to a Java server they call
Blender. Get the details straight from Twitter.

Bruno Souza Martijn VerburgBen Evans

95th Percentile Search API Latencies Before
and After Blender Launch

http://oracle.com/javamagazine
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
http://jcp.org/ja/whatsnew/elections
http://java.net/projects/soujava
http://londonjavacommunity.wordpress.com/
http://www.facebook.com/notes/facebook-hacker-cup/facebook-hacker-cup-finals/208549245827651
http://engineering.twitter.com/2011/04/twitter-search-is-now-3x-faster_1656.html

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

CO
M

M
U

N
IT

Y

05

JA
VA

 T
EC

H
AB

OU
T

US
JA

VA
 IN

 A
CT

IO
N

blog

//java nation /

Defining the Future of the Java Community Process
PATRICK CURRAN, chairman of the Java Community Process (JCP),
announced the first of two new Java Specification Requests (JSRs) that
will define the future of the JCP. The new “JCP.next” JSRs will specify
changes to the JCP Process Document, which defines the formal pro-
cedures for using the Java Specification development process. The first
JCP.next JSR, JSR-348, proposes a variety of changes and adjustments
to the Java Community Process, with the objective of improving trans-
parency, participation, agility, and governance in the JCP. The second
JSR will address more-complex issues. Follow progress at the JCP.next
Resources page, or participate in the JCP.next project on Java.net.

JCP Chairman Patrick Curran chats
with Java Magazine Editor in Chief
Justin Kestelyn.

LEARN JAVA BASICS
AND TRICKS
With the Java 7 release, academic events are front and center, including a three-
day workshop in August and weeklong activities at JavaOne 2011.
Java Summer Workshop, August 10–12. Oracle is offering a free three-day workshop to high
school students and teachers in California's San Francisco Bay Area on programming
with Alice and Greenfoot. Attendees will learn how to create animations and games
and get an introduction to the Java programming language using 3-D Alice software
and 2-D Greenfoot software. Tutorials will be available online after the event. The event takes place at the Oracle Conference
Center in Redwood Shores, California.

JavaOne, October 2–6. With the affordable Discover Pass, teachers and qualifying students can benefit from the industry-
leading Java conference. Students and teachers can attend programming sessions designed for people with some or no
programming experience. Attendees with no programming experience will discover tools and projects related to program-
ming. Those with programming experience will learn tips and tricks for programming complex logic and expand their
knowledge of programming projects.

Other learning opportunities include JavaOne keynotes, which offer the latest news on Java technology, and the JavaOne ex-
hibit hall, with live, hands-on demonstrations and discussions of the latest Java software technologies. Students and teachers
can also network with top industry programmers at the Oracle User Groups Pavilion and the OTN Lounge. Register today.

Java.net
Expanding
Project Hosting
Capability
2011 has been a year of rapid
expansion in the toolset
Java.net offers to open source
projects. First, in late February
Java.net’s project infrastructure
was migrated to Kenai. Since
then, the Java.net/Kenai infra-
structure has undergone suc-
cessive enhancements, provid-
ing greater choice and power
to open source project leaders
and developers.

Java.net’s offerings now
include the Subversion and
Git version control systems,
JIRA issue and project tracking,
and Sonatype’s Nexus Maven
Repository Manager service.
More than 2,000 active proj-
ects are currently utilizing the
upgraded Java.net project in-
frastructure. Visit the Java.net
Create a Project page if you’d
like to join them.

ART BY I-HUA CHEN

http://oracle.com/javamagazine
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
http://blogs.oracle.com/jcp/entry/jcp_next_jsr_submitted_to
http://jcp.org/en/procedures/jcp2
http://jcp.org/en/jsr/detail?id=348
http://www.jcp.org/en/participation/JCPnextWG
http://www.jcp.org/en/participation/JCPnextWG
http://java.net/projects/jsr348/pages/Home
http://www.alice.org
http://www.greenfoot.org
http://www.oracle.com/technetwork/topics/newtojava/javasummerworkshop-403742.html
http://www.oracle.com/javaone/registration-173447.html#discover
http://www.oracle.com/javaone/registration-173447.html
http://www.java.net/projects
https://maven.java.net/index.html
https://maven.java.net/index.html
http://www.java.net/create-project
javascript:var w=window.open('http://www.oraclejavamagazine-digital.com/javamagazine/misc/video_page5.html','_blank','left=300,top=400,width=400,height=250;location=no');

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

CO
M

M
U

N
IT

Y

06

JA
VA

 T
EC

H
AB

OU
T

US
JA

VA
 IN

 A
CT

IO
N

blog

//java nation /

African
Developers

Get
Organized

Something is brewing
in Africa: developers are
organizing themselves into
groups that span the conti-

nent. In 2010, Jean-François (Max) Bonbhel
founded JUG-AFRICA as an umbrella group
for African Java user groups, with the objec-
tive of facilitating collaboration. With 5,000
members in 14 countries, JUG-AFRICA spon-
sors the biggest Java community event in
Central Africa, JCertif (September 3–4).

A new group, Coders4Africa, held its first
major event, Coders4Africa 2011 Ghana,
June 18–19 in Accra, Ghana, with Oracle's
sponsorship. Cofounder Amadou Daffe says
the group’s objectives include “developing
a community of African developers across
Africa under one structured roof.”

Both groups provide organizational struc-
tures that address the unique challenges
that African developers face and exemplify
the collaborative spirit that’s spreading
across Africa.

OpenJDK Becomes Official Java SE 7
Reference Implementation
In a recent blog post, Java SE Product Manager Henrik Ståhl an-
nounced that Oracle will create Java SE 7 Reference Implementation
binaries based only on the OpenJDK, will make those binaries

available under the Binary Code License for commercial implementers and General
Public License v2 (with the Classpath exception) for open source implementers,
and will update the OpenJDK TCK License Agreement (OCTLA) so that it covers
Java SE 7. With these changes, open source implementers will have access to Java
SE RI source code that allows more-direct comparisons to their implementations
for verifying compatibility, as well as to the TCK on a free-as-in-beer basis.

JAVA BOOKS

THE WELL-GROUNDED JAVA
DEVELOPER—JAVA 7 AND
POLYGLOT PROGRAMMING
ON THE JVM
By Benjamin J. Evans and
Martijn Verburg
Manning Publications

The Well-Grounded Java
Developer is a unique guide
written for developers with
a solid grasp of Java funda-
mentals. It provides a fresh,
practical look at new Java 7
features, along with the array
of ancillary technologies that
a working developer will use
in building the next genera-
tion of business software.

Following its thorough
coverage of new Java 7 fea-
tures, the book explores a
cross section of emerging Java
virtual machine (JVM)–based
languages, including Groovy,
Scala, and Clojure. You’ll find
dozens of valuable develop-
ment techniques showcasing
modern approaches to con-
currency and performance.

JAVA FOR PROGRAMMERS,
2ND EDITION
By Paul Deitel and Harvey Deitel
Pearson/Prentice Hall
Professional

Written for programmers with
a background in high-level
language programming, this
book applies the Deitel sig-
nature live-code approach to
teaching programming and
explores the Java language
and Java APIs in depth. The
book presents concepts in
the context of fully tested
programs, complete with
syntax shading, code high-
lighting, line-by-line code
walkthroughs, and program
outputs. The book features
more than 200 complete Java
programs with more than
18,000 lines of proven Java
code, as well as hundreds
of tips that will help readers
build robust applications.

Read a sample chapter,
“ Object-Oriented Programming:

Polymorphism”

JCertif conference participants

PHOTOGRAPH BY JCERTIF 2010

http://oracle.com/javamagazine
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
http://www.java.net/author/jean-francois-bonbhel
http://java.net/projects/jug-africa
http://jcertif2011.eventbrite.com/
http://www.coders4africa.org
http://blogs.oracle.com/henrik/entry/moving_to_openjdk_as_the
http://openjdk.java.net/legal/openjdk-tck-license.pdf
http://manning.com/evans
http://manning.com/evans
http://manning.com/evans
http://manning.com/evans
http://www.informit.com/title/0132821540
http://www.informit.com/title/0132821540
http://www.informit.com/content/images/9780132821544/samplepages/0132821540.pdf
http://www.informit.com/content/images/9780132821544/samplepages/0132821540.pdf

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

07

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
JA

VA
 T

EC
H

AB
OU

T
US

blog

PHOTOGRAPHY BY PAULO FRIDMAN

Globo TV brings new content and
capabilities to Brazilian viewers.

BY DAVID BAUM

It’s just another day at home as you tune in
to your favorite interactive TV show. Helena
(Taís Araújo), the main character on the
popular Brazilian telenovela Viver a Vida,
is on location in Buzios, a beach village

in the state of Rio de Janeiro. As Helena strolls
down the waterfront, the camera zooms in and
a small, nonintrusive alert appears at the bot-
tom of your TV screen—an invitation to access
further information about Helena’s personal
history and how she fits into the plot. By the
time the show airs again tomorrow, you will have
become a veritable expert on the many intrica-

Interactive
TV Takes Off
with Java

Carlos Fini, Engineering
Manager, Globo TV

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

08

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
JA

VA
 T

EC
H

AB
OU

T
US

blog

SNAPSHOT
GLOBO TV
globotvinternational.com

Location:
Rio de Janeiro, Brazil
Industry:
Media and entertainment
Employees:
8,500

cies of Viver a Vida’s dramatic story line.
Thanks to Java, Brazilian television is

no longer a passive medium. The interac-
tive digital TV services offered by Globo
TV, Brazil’s largest broadcaster, let viewers
control the audio/video experience, includ-
ing participating in polls; responding to ads;
monitoring sports statistics; downloading
clips; participating in quizzes; playing games;
and customizing how they receive weather
reports, traffic information, and local news
broadcasts. Java apps also enable TV viewers
to send e-mail, review player profiles, verify
bank balances, and purchase products and
services during TV episodes.

“We are providing viewers with better
mobile coverage, new interactive capabilities,
and a rich media experience,” says Carlos Fini,
an engineering manager at Globo TV. “Java is
open source, royalty free, and supported by a

large and active developer community. It was
the perfect choice for our needs.”

Globo TV is the largest and most influen-
tial broadcaster in Brazil and also exports
content to 171 countries. The majority of
the Brazilian population enjoys free-to-air
television, and Globo TV has a
70 percent share of this over-
the-air (OTA) market. Fini has
spent 15 years leading a techni-
cal team at Globo TV. His Java
programming staff is currently
engaged in creating software
applications for delivering new
types of interactive TV content.
Viewers simply push the i but-
ton on their remotes to access
these interactive features,
launching Java applets that
have been transmitted to

their set-top boxes along with the digital
media broadcast.

“Java is supported by many entertain-
ment devices, which means our interactive
TV programs can be delivered using the same
technology received by gaming systems,

mobile phones, set-top boxes,
and Blu-ray players,” Fini adds.
“In conjunction with the Ginga
middleware standard, Java pro-
vides a new way to send content
to TV viewers and receive feed-
back from those viewers.”

THE PROMISE OF DIGITAL
TELEVISION
Many countries are replac-
ing OTA analog television with
digital television to maximize
the uses of the radio spectrum.

Carlos Fini, an engineer-
ing manager at Globo
TV, oversees operations
in the control room.
With Java, Globo TV is
taking viewers from a
passive to an active tele-
vision experience.

JAVA CONSUMPTION

Consumers have
purchased 3 billion
Java-enabled
devices, from
set-top boxes to
embedded high-
definition tuners,
for at-home use.

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://globotvinternational.com

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

09

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
JA

VA
 T

EC
H

AB
OU

T
US

blog

In the U.S., digital TV has become popular
mainly due to its ability to deliver superior
picture and sound quality. In Brazil, digital TV
is also interactive, enabling viewers to cus-
tomize and control the viewing experience—
whether by voting for their favorite player
during a World Cup Soccer match or changing
the viewing angle during a reality TV show.

Indeed, it was the pending 2010 FIFA
World Cup championship that motivated
Globo TV to finalize this interactive environ-
ment. The company’s content developers and
programming experts knew that Brazil’s mil-
lions of passionate soccer fans would enjoy
being able to choose how and when to view
tournament stats, player profiles, and synop-
ses of previous matches. In addition, Globo
TV management knew that it could offer a
very interesting business model.

A digital signal not only requires less
bandwidth but also permits rich content and
interactive capabilities for shopping, voting,

gaming, and other
new-media functions.
Broadcasters can
transmit Ginga ap-
plications within their
production signals to
augment the audio/
video stream, con-
trol media playback,
control the display
hardware and tun-
ing functions, launch
other applications, and
overlay supplemental
media content on the
standard broadcast
signal.

“We needed a very
flexible development environment to com-
pete with other new-media services,” says
Fini. “Additionally, we wanted to make the
user experience as compelling as possible
to captivate viewers and build the audience.
Java is open and works on many different
platforms.”

Best of all, Java is ubiquitous. Like most
countries, Brazil has a large community of
Java developers, giving Globo TV a large and
reliable pool of expertise for its development
projects. Java is pervasive not only in the com-
puter industry—with more than 840
million Java desktops—but in the
home entertainment industry, where
consumers have already purchased
3 billion Java-enabled devices, from
set-top boxes to embedded high-
definition tuners. Java is also quickly
gaining ground in the mobile com-
puting world, with 2.6 billion Java-
enabled phones in circulation—

approximately 85 percent of all mobile phones
worldwide. In the broadcasting industry, about
180 operators are deploying Java content.

MIDDLEWARE FOR BROADCASTERS
AND MANUFACTURERS
Sun created the Java DTV specification
in partnership with the SBTVD (Sistema
Brasileiro de Televisão Digital) Forum, a Bra-
zilian digital TV forum founded in 2006 to
guide standards and technical specifications
for the transmission and reception of digital
TV in Brazil. The objective of the group was to
develop and implement a digital TV standard
that not only addresses technical and eco-
nomic issues but also helps promote an “in-
formation society” that brings government
closer to the population. This is important
in a country where 96 percent of households
have a TV set and less than 20 percent have
a computer.

“We believed that Java was the more ap-
propriate tool available to create new solu-
tions for interactive TV services,” notes Fini,
who was one of the founding members of the
SBTVD Forum.

One of the significant decisions of the
Forum was to adopt Ginga as the country’s
middleware standard. Ginga simplifies the
creation of digital TV applications by pro-

viding a high-level open develop-
ment environment and libraries
of standard functions. As an open
specification, Ginga is easy to learn
and free of royalties, encouraging
widespread use by content produc-
ers. More and more manufacturers
are including it in their TVs, set-top
boxes, and peripheral devices. By
enabling a variety of e-commerce

BIG BUSINESS

Globo TV
exports
content
to 171
countries.

Viewers of the Brazilian
soap opera Viver a Vida
can push the i button
on their remote con-
trols to interact with
the program—in this
case, to call up a syn-
opsis of the previous
episode (at right).

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

10

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
JA

VA
 T

EC
H

AB
OU

T
US

blog

applications, Ginga applications ultimately
lower the cost of television receivers and
set-top boxes for consumers.

Ginga includes two primary programming
paradigms: Ginga-NCL and Ginga-J. Ginga-
NCL is a multimedia presentation environ-
ment for declarative applications. Developers
use this XML-based language to synchronize
media objects, control media content, and
present interactive programs to consumer
devices. Ginga-J provides an execution infra-
structure for Java applications.

“Ginga-J extends Java DTV for the Brazilian
system with specific APIs for interacting with
consumer devices and managing an asynchro-
nous messaging environment,” explains Fini.

Ginga-J was approved by the
Forum in April 2009 along with
the Java DTV API. These speci-
fications (known respectively
as transmission, reception, and
code-back) enable Java develop-
ers to create apps that can receive
content from broadcasters, read
this content, and send content to
subscribers. Oracle’s royalty-free
specification has since become
the digital terrestrial TV standard
in Brazil and most other South
American countries.

The Forum also adopted the
ISDB-T standard, which was
originally popularized in Japan
and is now pervasive across most

of South America. ISDB-Tb (the b indicates
the Brazilian version of the standard) had an
edge especially because of its one-seg feature,
which allows broadcasters to embed a free-
for-all low-resolution signal for mobile phones
and tablets, as well as standard-definition and

high-definition TV broadcasts. One-seg has
proven to be a very enticing feature for its abil-
ity to democratize access to news and infor-
mation in developing countries.

THE NUTS AND BOLTS OF INTERACTIVE TV
Today 10 developers on Fini’s team are bol-
stering Globo TV’s lineup with a wide array of
interactive TV apps and content. “Everything
is brand new, so the team is pioneering new
models,” he says. The developers use Oracle’s
Lightweight UI Toolkit (LWUIT), a UI library
targeted for mass-market mobile devices
that shields developers from the need to
write device-specific code for different screen
sizes. This is important because Globo TV
simultaneously broadcasts content for large-
format televisions and tiny mobile devices.

Globo TV’s digital TV applications take the
form of PBP Xlets—self-contained Java apps
that are packaged into signed JAR files and
transmitted as part of the broadcast stream.
Embedded Xlets allow the broadcaster to
synchronize the application functions with
the TV program, permitting viewers to start,
stop, and pause the signal as well as to con-
trol interactive TV functions such as shop-
ping, voting, and downloading content.

“The use of Java technology allows for rich
media and interactive applications com-
bined with the regular TV broadcast such as
program-related information, games, voting,
targeted advertising, and e-government,”
says Fini. “Platform architects, application
developers, and media content authors are
actively developing these applications.”

The Java DTV specification permits multiple
applications to be executed simultaneously
yet run autonomously, shielded from each
other in a persistent file system. Applica-

tions, sounds, images, and other information
can be embedded into the transport stream,
which originates on the broadcast carousel
and is transmitted to the set-top box. A Java
Media Framework player handles time-based
media streams, typically associated with a
media decoder.

Media pundits acknowledge the bright po-
tential for interactive TV in Brazil. By starting
with a complete, royalty-free Ginga specifica-
tion, supplemented by Java, Brazil is avoiding
the gridlock that has plagued interactive TV in
the U.S. and elsewhere.

“In 2011 the Brazilian market will reach
between 17 million and 20 million DTV
consumers, and part of them are using our
interactive TV service,” concludes Fini. “Using
a standard language ensures compatibility,
and Java is rich and robust.” ●

JAVA FACT

In the mobile
computing
world, there are
2.6 billion Java-
enabled phones in
circulation—
approximately
85 percent of all
mobile phones
worldwide.

Resources for
Java Developers
Downloads
Java DTV API 1.0 Specification

Forums
LWUIT Open Source Community
Java TV Forums Home
Java Embedded Forums Home

Data Sheets and White Papers
Java Technology for Digital Media
Java Technologies for Interactive Television
JavaTV API Technical Overview

Based in Santa Barbara, California, David Baum
writes about innovative businesses, emerging tech-
nologies, and compelling lifestyles.

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://cds.sun.com/is-bin/INTERSHOP.enfinity/WFS/CDS-CDS_Developer-Site/en_US/-/USD/ViewProductDetail-Start?ProductRef=javadtv-1.0-oth-JPR@CDS-CDS_Developer
http://lwuit.java.net
http://forums.oracle.com/forums/category.jspa?categoryID=496
http://forums.oracle.com/forums/category.jspa?categoryID=296
http://java.sun.com/javame/reference/docs/digital_media.pdf
http://oracle.com/technetwork/java/javame/techintertv052101-150048.pdf
http://oracle.com/technetwork/java/javame/jtv-1-0-spec-overview-150049.pdf
mailto:dwbaum%40mac.com?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

11

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
JA

VA
 T

EC
H

AB
OU

T
US

blog

Java provides a global IT platform for foreign exchange leader Travelex Group. BY PHILIP J. GILL

The dollar, the euro, the pound, and the yen may dominate international currency trans-
actions, trade, and travel, but they are far from the only currencies that businesses and
tourists need to concern themselves with today. In this era of globalization, little-known

currencies from far-off countries are becoming increasingly important.
Consider the national currency of Angola, the kwanza. Just a few years back, few thought they

would need to exchange their dollars or euros for the kwanza (named for the country’s largest

Sold on
 Java

PHOTOGRAPHY BY JOHN BLYTHE
AND GETTY IMAGES

Colin Renouf, Enterprise Solutions
Architect, Travelex

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

12

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
JA

VA
 T

EC
H

AB
OU

T
US

blog

river). But today many do, because the south-
ern African republic is an emerging business
and tourist destination.

Following the daily fluctuations of the
kwanza—and more than 80 other world
currencies—and navigating the many na-
tional finance laws that guide international
currency transactions is the business of
London, England–based Travelex Group, the
world’s leading specialist provider of foreign
exchange and international payments.

“We are in the foreign exchange business,”
explains Travelex Enterprise Solutions Archi-
tect Colin Renouf, “but I also like to think of

us as being in the data
exchange business
because of our expertise
in currencies.”

In the past, the IT sys-
tems that supported and
enabled Travelex’ many
regional operations around
the world were built on
Windows and .NET tech-
nologies. However, as
operations have expanded
around the globe, the
Travelex senior manage-
ment team has come to
realize that those systems
do not provide the kind of
standards-based, portable,
and scalable platform the

group needs to support its growth, especially
in emerging economies. “The difficulty with
Windows is that it’s proprietary and it’s diffi-
cult to integrate,” says Renouf.

To support current and
future growth, senior manage-
ment realized that the com-
pany needed to trade in those
old systems for a new platform.
Today Travelex is sold on Java.
“All current global enterprise
systems under development
are in Java,” says Renouf. “Go-
ing forward, the majority of

global enterprise systems in development
will be in Java.”

FROM 1 TO 1,000
Travelex was founded in 1976 as a single ex-
change shop in London. Today its consumer-
focused operations provide cash and prepaid
cards to more than 30 million retail customers
each year, through a network of close to 1,000
stores and more than 500 ATMs spread across
24 countries. Travelex Global Business Pay-
ments (TGBP), the group’s business-focused
operation, provides international business
payments to more than 35,000 businesses.
On July 5, 2011, Travelex announced that it had
agreed to the sale of TGBP to Western Union
for £606 million, providing significant capital
for further investment as the group looks to
accelerate its growth in both existing and new
markets, as well as provide customers with ac-
cess to innovative foreign exchange products
and services across the globe. This transaction
is likely to close toward the end of 2011. Until
then, TGBP will remain an important business
for Travelex.

Partly due to the company’s growth
through mergers and acquisitions, Travelex’
regional IT systems operated independently
of each other. Often whatever systems were in

place at the time of an acquisi-
tion tended to stay in place.

That began to change when
Travelex’ current CIO, Steve
Grigg, came on board in spring
2008. A financial industry
veteran, Grigg knew firsthand
the difficulties finance orga-
nizations face in building and
integrating enterprise systems,
as well as the benefits of get-

Portability, scalability,
and internationalization
are key reasons why
Travelex is banking on
Java, says Travelex
Enterprise Solutions
Architect Colin Renouf.

SNAPSHOT
TRAVELEX GROUP
www.travelex.com

Headquarters:
London, England
Industry:
Foreign exchange
Revenue:
More than US$1.1 billion
in FY 2010
Employees:
More than 7,000
Java version used:
Java Platform, Enterprise
Edition 6 (Java EE 6)

JAVA FACT

Travelex is the
world’s largest
nonbank provider
of international
currency payments.

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.travelex.com

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

13

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
JA

VA
 T

EC
H

AB
OU

T
US

blog

More than a Technology
For Colin Renouf, enterprise solutions architect
at Travelex Group, Java is more than a technol-
ogy platform for developing enterprise systems
whose virtues of portability, scalability, program-
mability, and reliability are unmatched. To
Renouf, one of the most important assets of Java
is the Java community.

As with any vibrant community, individual par-
ticipation is vital for the Java community’s health
and growth. Travelex, for instance, was involved
in the security around internationalization of the
Java platform—looking at some of the conver-
sions in different layers as a result of double-byte
character sets, for example, and how to ensure
that, as Renouf puts it, “what hits the Java layer
is what it should be.” Some of this work has been
provided back to Oracle and other partners, and
some has gone back to the community as a whole.

Travelex is also involved in educational efforts.
“A number of people on our team are very active
in the Java community,” says Renouf. “Three
of us have written books and for magazines,
worked on standards, run community events, and
on occasion have even done work for some of
our customers or have externally supported big
industry events.” Renouf adds that he and his col-
leagues encourage others to participate as well.
“It’s a great way to learn and get collaboration on
meeting some of your requirements, and it brings
a level of satisfaction in knowing that you have
‘made a difference,’” he says, concluding, “Power
belongs to those who participate.”

ting all operating units on the same IT page.
Grigg’s mission, explains Renouf, was to bring
the regions together by building new systems
on a single platform that Travelex could use to

develop, integrate, and
deploy in many regions
around the globe.

That platform is Java,
which provides a rich,
standards-based, por-
table, scalable, reliable,
and fully international-
ized platform for applica-
tion development. “Java
is a very rich develop-
ment environment, and
you can use it for any ap-
plication,” says Renouf,
whom Grigg recruited.
“But the richness of Java
comes more into its own
in enterprise and B2B
[business-to-business]
systems,” Renouf contin-
ues, “because the facili-
ties for integration that
different open source
and EJB [Enterprise
JavaBeans] technolo-
gies offer is coupled with
the richness of the Web
and internationalization
functionality. This allows
us to take our organically
grown local systems and
federate them to our re-
gional operations around
the world.

At the same time,
Renouf adds, the inter-

faces and mechanisms Travelex uses allow
the company to gradually align the architec-
ture across its many different regions, “while
still changing the overall estate to give richer
functionality and more-agile delivery.”

One of Travelex’ first new Java systems has
been its Global Payments Gateway (GPG),
which was developed, tested, and deployed
in less than nine months. GPG comprises a
“complete Java and Oracle stack,” says Renouf,
including Oracle WebLogic Server 11g, Oracle
Database 11g, and other Oracle products. Be-
sides processing international currency trans-
actions for Travelex’ many business and finan-
cial institution clients, GPG
also connects those clients to
the many Society for World-
wide Interbank Financial
Telecommunications (SWIFT)
financial messaging networks.
SWIFT links more than 9,000
financial institutions in 200
countries and territories.

GPG allows Travelex’ clients
to send payments in any cur-
rency to anywhere, from any-
where. “If a customer wants
to send money to somebody
in Kuala Lumpur, they can just
select the country, the cur-
rency, and how much they want to send—then
enter their bank account and it’s done,” says
Renouf. In addition, he says, a new Web-based
feature will allow individuals to send money
from their home and business computers.

Portability, scalability, and international-
ization are key reasons why GPG is written in
Java. In some locations or regions, GPG can
scale up to between 400 and 500 transac-
tions per second, while in other locations it

will only need to process a few transactions
per minute, says Renouf.

But the real point of Java, he explains, is
that it provides a common architecture that
is the same everywhere, which Travelex can
easily integrate from development to deploy-
ment. “That way we can do the same thing in
different regions,” he says.

Java’s internationalization features enable
Travelex to support dozens of local languages
in the front end of their systems, as well as
the business logic that runs behind them. In
this way, it’s now easier to deploy features
developed for the U.S. market, for example, in

places like China and Japan.
One area in which Travelex

has done a great deal of work
on its own is reliability, says
Renouf. Because of govern-
ment regulations around
the world, Travelex needs to
understand how, why, and
where its systems might
fail and how to recover. Java
makes this considerably
easier than other program-
ming environments, says Re-
nouf. “Java provides an awful
lot of tools out of the box to
enable you to understand

exactly what’s going on, though most people
don’t exploit them,” he says. “We build on
what we learn from those tools to diagram
and document behavior under exceptional
conditions and to work out how to develop
more-reliable and secure systems.” ●

Philip J. Gill is a freelance writer and editor based in
San Diego, California.

JAVA FACT

Travelex’ Java-based
Global Payments
Gateway can scale from
a few transactions per
minute to between 400
and 500 transactions
per second.

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:philipjgill%40gmail.com?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

JA
VA

 T
EC

H

14

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//new to java /

In previous articles I’ve written,
for example, “Wombat Object

Basics” and “Wombat Classes
Basics,” I covered important
basic concepts of object orienta-
tion. The concepts were explored
mostly by investigating existing
source code and by discussing
theory. Programming, however,
is about doing. So in this article,
we’ll jump right in and start to
make our own class. In the pro-
cess, you will learn about objects,
methods, and parameters.

Prerequisites
To follow along, you will need the
following software installed on
your computer:
■■ Java Platform, Standard Edition

(Java SE)
■■ Greenfoot version 2.1.0 or newer

Ensure that you have a new
enough version of Greenfoot. You
can check your version using the
About Greenfoot menu item.

Creating Your Own Project
In my previous articles, I worked
with an existing project (wom-
bats). This time, let’s create our
own project.

Greenfoot calls its projects
scenarios. So the first thing we’ll
do is to create a new scenario.
1. Start Greenfoot.
2. Greenfoot usually opens the

last scenario you worked
on. Close this by selecting
the Close function from the
Scenario menu.

3. Select New from the Scenario
menu.

4. In the New Scenario dialog
box, name the new scenario
turtle and click OK.

You should now have a new
scenario window that is mainly
gray, as shown in Figure 1.

We now have a shell for a new
scenario, a place where we can
start to work. We do not have a
world yet to make things happen
in, and we do not have any actors
that can do things.

The two classes you see on the
right side of the window, World
and Actor, are superclasses. They
are not a specific world or a spe-
cific actor, but rather descriptions
of all possible worlds and actors.
We will create a specific world and
actors by creating subclasses of
these. Subclasses represent spe-

cializations of the
superclasses.

Let’s start by
making a world.

Creating a New
World
1. Right-click the

World class
(the beige box)
and select the
New Subclass
function.
A dialog box asks

you for a name
and an image for
your new class (see
Figure 2).
1. Name your class

TurtleWorld, and
select an im-
age from the
Backgrounds
category of the
image library.
For the screen-

shots in this ar-
ticle, I selected a
background image
called weave.jpg.
2. Click OK and

then click the

Getting Your Feet Wet
Use Greenfoot to create Java classes, objects, and methods.

MICHAEL KÖLLING
BIO

Figure 1

Figure 2

Figure 3PHOTOGRAPH BY JOHN BLYTHE

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.oracle.com/technetwork/articles/javase/wombat-basics-135972.html
http://www.oracle.com/technetwork/articles/javase/wombat-basics-135972.html
http://www.oracle.com/technetwork/articles/javase/wombat-world-141896.html
http://www.oracle.com/technetwork/articles/javase/wombat-world-141896.html
http://www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html
http://www.greenfoot.org/download/
javascript:openPopup('bio_p14')

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

JA
VA

 T
EC

H

15

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//new to java /

Compile button in the main Greenfoot
window.

You should see a world appear in your
Greenfoot window with your selected
background (see Figure 3).

Now that we have created a world, we
are ready to create actors to put into it.

A Side Note About Compiling
When we program, we write Java code.
Unfortunately, your computer cannot
execute Java code directly. It needs
its instructions in a specialized ma-
chine language.

Fortunately, there is an easy solution:
the compiler. A compiler is software that
can translate Java code into machine
language. Every time you create a new
class or you make a change to the source
code of an existing class, the class needs
to be translated to machine language
again. You can do this easily just by click-
ing the Compile button.

In Greenfoot, a class appears striped
if it has not been compiled since the last
change (see Figure 4).

Once you click the Compile button
and the class is translated, the stripes
disappear (see Figure 5), and the class
is ready to be used.

Creating an Actor
We now have a world that our
actors can live in. However,
we do not have an actor to do
anything yet. So let’s make
an actor.
1. Right-click the Actor class

and select the New subclass
function.

2. In the resulting dialog box,
name the new class Turtle,
and select the turtle2.png
image from the Animals
category (see Figure 6).

3. Click OK.
You now have a brand-new

Turtle class in your scenario.

Note that this class is initially striped
(that is, uncompiled).
4. Click the Compile button to compile

the class.
Note that by convention, Java class

names always start with a capital letter.

Creating Objects
We now have an actor class (Turtle), but
we do not have actor objects yet.

Right-click the Turtle class and se-
lect new Turtle().This creates a turtle
object—that is, an actual actor—which
you can then place into the world.

That’s it. You just created your first
turtle. Note that you can create as many
turtles as you like. Try it out.

Programming Your Objects
1. Click the Run button.

In my previous articles, clicking Run
made the wombats run around the
world. Now, nothing happens. Our turtle
just sits there, not doing anything.

That’s because we haven’t pro-
grammed our turtle to do anything.

So here is where the fun starts. We will
now start programming in Java to make
the turtle act.
2. Open the editor for the Turtle by

double-clicking the Turtle class box.
You will see some code for the Turtle

class, as shown in Listing 1.
We will concentrate on the act

method. That is the bit of code that

See listing as text

Figure 6

Figure 4

Figure 5

import greenfoot.*; // (World, Actor, GreenfootImage, Greenfoot and MouseInfo)

/**
 * Write a description of class Turtle here.
 *
 * @author (your name)
 * @version (a version number or a date)
 */
public class Turtle extends Actor
{
 /**
 * Act - do whatever the Turtle wants to do. This method is
 * called whenever
 * the 'Act' or 'Run' button gets pressed in the environment.
 */
 public void act()
 {
 // Add your action code here.
 }
}

LISTING 1

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.oracle.com/ocom/groups/public/@otn/documents/webcontent/427745.html

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

JA
VA

 T
EC

H

16

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//new to java /

looks like this:

This bit of code specifies what the
turtle does when it acts. The code
between the curly braces ({ and }) is
executed every time the turtle acts. In
this case, all that is written here is
the following:

The double slash at the beginning of
the line marks this line as a comment. It
is ignored by the Java system and is just
a reminder for the human programmer.
In other words, this act method contains
no code at all. That’s why our turtle does
not do anything.

Let’s change that.
3. Replace the comment with an in-

struction so that your act method
looks like this:

4. Compile, create a new turtle, and try
clicking the Act button and the Run
button.

So, what did we just do?
The instruction move(2); tells the

turtle to move two pixels forward. The
turtle does this every time it acts. When

you click the Act button, the act method
is executed once, so the turtle moves a
little bit (2 pixels) to the right. Clicking
the Run button calls the act method over
and over again (until you pause again),
so the turtle keeps moving.
5. Experiment with values other than 2.

What happens when you use 20 in-
stead of 2?
6. Try another instruction by replacing

the move(2); instruction with this
instruction:

Remember: Change the code, com-
pile, create a new turtle, and then run.
Experiment with different values here
as well.

Methods and Parameters
So, what have we just done?

We have called (or invoked) a method
called move and a method called turn,
and we have passed a parameter, 2, to
each of them.

A method is a bit of behavior that
an object knows to execute, and all
actors know the move and turn meth-
ods (meaning they know how to move
and turn).

Both of these methods expect a
parameter, which is a bit of additional
information that tells them exactly how
far to move or how much to turn. Both
methods expect a number as a param-
eter, and we supply that number by writ-
ing it in parentheses after the name of
the method. And each instruction in Java
is ended with a semicolon.

Errors
You might have noticed that
you need to write your code
very precisely. Getting even
one character wrong makes
the whole program not work.
The compiler then reports an
error message, and you need
to fix your code.

If you have not yet seen an
error message, try it now. For
example, remove the semi-
colon after your instruction and
try to compile. You’ll see what I mean.

Sequences of Instructions
You can write multiple instructions, as
many as you like, into your act method.
In fact, you can write one after the other:

Try this out. Also, place multiple tur-
tles into the world, and experiment with
different parameter values for both the
move and turn methods (see Figure 7).

Summary
In this article, you learned the first few
steps of writing your own Java code,
which demonstrated the following
principles:
■■ The behavior of an object is specified

in the object’s class.
■■ More precisely, the behavior of an ob-

ject is specified in a method definition

in the object’s class.
■■ Actor classes in Greenfoot have a

method called act that specifies their
main behavior.

■■ The body of the method (the bit
between the curly brackets) contains
the code that determines what the
method does when it is called.

■■ Instructions can be specified by call-
ing existing methods (such as move
and turn in our example).

■■ Method calls consist of the name of
the method you are calling followed
by parameters in parentheses.

■■ All instructions are terminated with
a semicolon.

■■ We can also write sequences of
instructions. ●

 public void act()
 {
 // Add your action code here.
 }

// Add your action code here.

 public void act()
 {
 move(2);
 }

 turn(2);

 public void act()
 {
 move(4);
 turn(2);
 }

Figure 7

LEARN MORE
•	Greenfoot

•	 Java SE API

•	Young Developer Resources

•	Young Developers Series
“Wombat Object Basics (Part 1)”
“Wombat Classes Basics (Part 2)”

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.greenfoot.org/about/
http://download.oracle.com/javase/
http://www.oracle.com/technetwork/topics/newtojava/young-developers-jsp-136992.html
http://www.oracle.com/technetwork/articles/javase/wombat-basics-135972.html
http://www.oracle.com/technetwork/articles/javase/wombat-world-141896.html

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

JA
VA

 T
EC

H

17

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//new to java /

This article, the first of a three-
part series, demonstrates

how to create a Java Platform,
Enterprise Edition (Java EE) appli-
cation integrating Representational
State Transfer (REST) Web ser-
vices. I will use the NetBeans 6.9.1
IDE and Java EE 6 to create the
application and Oracle GlassFish
Server 3.1 to deploy it.

Part 2 (coming in the next is-
sue) covers managing the answers
sent by a Web service using the
JavaScript Object Notation (JSON)
framework, while Part 3 focuses on
the integration of Java API for XML
Web Services (JAX-WS). These
articles highlight methods for
increasing application agility.

What Are Web Services?
Web services provide a standard
means of interoperating among
software applications that run on
a variety of platforms or frame-
works. In other words, Web ser-
vices are the best and standard
way to extend your application
in order to make it interoperable

with other systems via HyperText
Transfer Protocol (HTTP) using
Extensible Markup Language
(XML). Web services allow you to
mask the complexity of each ap-
plication included in the exchange
and achieve complex operation.

Web services are more than the
sum of the technologies used to
deploy an application. They are a
method for carving out services
from business functionalities that
are then exposed to be consumed
by client applications.

Why RESTful Web Services?
Java EE 6 provides natively all
mechanisms for REST via the “Java
API for RESTful Web Services”
(JAX-RS), JSR-311. There are many
good reasons to choose REST to
add the Web services into your
system. Here are some examples:
■■ The most important reason is

that RESTful Web services are
easy to learn, easy to build, and
easy to deploy.

■■ REST provides a uniform in-
terface between the produc-

ers and the consumers of the
services. And RESTful Web
services provide support for
a variety of message formats
(XML, JSON, HTML, and more).

■■ RESTful Web services are easy
to integrate into existing ap-
plications in order to extend or
add new functionality.
REST is just an architectural

style, not a technology. That is
why there is a specification, JSR-
311, to describe how REST should
be implemented in Java. There
have been several implementa-
tions of this standard. Jersey is the
official reference implementation
and the one that is most widely
used in development and produc-
tion. Jersey is open source and
backed by Oracle.

However, REST might have
some limitations when it comes
to “big” Web services. This will be
discussed in Part 3 of the series.

Prerequisites
The following software was used
to develop the application de-

scribed in this article:
■■ NetBeans IDE. Download here.
■■ Jersey (included in NetBeans):

It is the open source, produc-
tion-quality reference imple-
mentation for a Java EE speci-
fication (JAX-RS JSR-311) for
building RESTful Web services.

Note: This article was tested using
NetBeans IDE 6.9.1; as of this writ-
ing, the latest version is NetBeans
IDE 7.0.

Real-Life Application
In this practical section, we will
build a real-life application step
by step so that you can learn
quickly the basics of the RESTful
Web services.

The application is an online
auction place (like eBay). Sellers
post their items in listings, and
buyers bid on the items. A seller
can post one or many items, and
a buyer can bid on one or many
items. To simplify, we will con-
sider the following entities: Seller,
Item, and Bid.

You can also download all the

Introduction to RESTful
Web Services
Extend or add functionality into your applications with RESTful Web services.

MAX BONBHEL
BIO

PHOTOGRAPH BY
ALLEN MCINNIS/GETTY IMAGES

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://jcp.org/en/jsr/detail?id=311
http://netbeans.org/downloads/index.html
javascript:openPopup('bio_p17')

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

JA
VA

 T
EC

H

18

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//new to java /

source code here.
Now let’s code this application in

five minutes using NetBeans and
JavaServer Faces.
1. Generate the initial NetBeans project:
 a. Launch NetBeans and create a new

project.
 b. From the File menu, choose New

Project.
 c. From Categories, select Java Web.
 d. From Projects, select Web

Application.
 e. Click Next.
 f. Type a project name, AuctionApp,

and click Next.
 g. Make sure the Server is GlassFish

Server (or similar wording).
 h. Click Finish.

The AuctionApp is created with a
simple index.xhtml.
2. Right-click the project and select

Run.
The default page, as seen in Figure 1,

will be displayed with the simple mes-
sage, “Hello from Facelets.”
3. Create the entities:
 a. Right-click the AuctionApp project

and select New; then select Entity
class.

 b. Type Seller in the Class Name field,
type com.bonbhel.oracle.auctionApp
in the Package field, and click Next.

 c. From the Provider and Database,

select EclipseLink (JPA 2.0)(default).
 d. Choose one of the datasources

provided by NetBeans. Click Finish.
 e. Repeat Step 3 for each entity.

NetBeans generates the Seller.java,
Item.java, and Bid.java files.

Now we are going to add properties in
the entities using the NetBeans wizard.
1. Open the Seller.java file, right-click

anywhere in the code, and select
Insert code.

2. Select Add property and add the
seller properties (String firstName,
String lastName, and String email).

3. Open the Item.java file and add the
item properties (String title, String
description, Double initialPrice, and
Seller seller).

4. Click the NetBeans warning to define
the entity relationship (bidirectional
ManyToOne).

This action creates a list of items in
the Seller entity.
5. Open the Bid.java file and add the

item properties (String bidderName,
Double amount, and item).

6. Click the NetBeans warning to define
the entity relationship (bidirectional
ManyToOne).

This action creates a list of bids in the
Item entity.
7. Generate the Getters and Setter,

respectively, for the list of items and
bids created in the Seller and Item
entities.
At this point, your Seller.java file will

look like Listing 1.
8. Add the RESTful capacities in the

initial NetBeans project:
 a. Right-click the AuctionApp project

and select New; then select RESTful
Web Services from Entity Classes.

 b. From Entity Classes, click Add all;
then click Next.

 c. Two names need to be specified:
a Resource Package name such as
com.bonbhel.oracle.auctionApp
.resource and a Converter
Package name, com.bonbhel.oracle
.auctionApp.converter.

 d. Click Finish.
New resources classes (that use JAX-

RS annotations to define the represen-
tation of the entities) and converters
classes (that use JAXB annotations
such as @XmlElement and @XmlAttribute
to define the way to marshal and un-
marshal the data) are added to the

project. Now the AuctionApp has
RESTful capacities.

Take a look at the BidConverter.java
code in Listing 2.

NetBeans has generated methods
that use GET and PUT annotation for
retrieving or updating an instance of Bid
identified by ID in XML format.

Notice:
■■ The @Produces({"application/xml",

"application/json"}) annotation allows
JAX-RS to specify XML format and
JSON as the types of representations a
resource can produce.

■■ The @Consumes({"application/xml",
"application/json"}) annotation allows
JAX-RS to specify XML format and
JSON as the types of representations a

See all listings as text

Figure 1

@Entity
public class Seller implements Serializable {
 @OneToMany(mappedBy = "seller")
 private List<Item> items;
 private static final long serialVersionUID = 1L;
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private Long id;
 protected String firstName;
 protected String lastName;
 protected String email;

 public List<Item> getItems() {
 return items;
 }

 public void setItems(List<Item> items) {
 this.items = items;
 }

LISTING 1 LISTING 2

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.oracle.com/technetwork/java/javamagazine/intro-restful-project-423377.zip
http://www.oracle.com/ocom/groups/public/@otn/documents/webcontent/427743.html
javascript:openPopup('p18_listing2')

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

JA
VA

 T
EC

H

19

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//new to java /

resource can consume.
Take a look at the BidConverter.java

code in Listing 3.
NetBeans has generated Getter

methods that use XmlElement anno-
tation to map the field of Bid entity to
XML format.
■■ The @XmlElement annotation tells

JAXB to map the id to a <id> element
of the XML document.

■■ The @XmlAttribute annotation tells
JAXB to map the uri to an uri attribute
on the the XML document.

In Figure 2, you can see the XML
representation of your resources in
the browser by typing this URL in your
browser: http://localhost:8080/
AuctionApp/resources/bids.

If you see this result, it means your
RESTful services are working correctly.

But to test it correctly, we need to use
Oracle’s JavaServer Faces. So we are go-
ing to quickly build a JavaServer Faces
front end to allow us to create data.
1. Create the JavaServer Faces pages:
 a. Right-click the Web Pages node of

the AuctionApp project and select
New; then select Folder.

 b. Type a Folder Name, such as ui.
Click Finish.

 c. Right-click the AuctionApp project
and select New; then select JSF
Pages from Entity Classes.

 d. From Entity Classes, click Add all;
then click Next.

 e. Type a Session Bean Package
name, such as com.bonbhel.oracle
.auctionApp.facade, and a JSF Classes
Package name, com.bonbhel.oracle
.auctionApp.presentation.

 f. Click Browse to select the ui folder
as the JSF pages folder.

 g. Click Finish.
2. Run the AuctionApp and add the data:
 a. Right-click the AuctionApp project

and select Run.
As seen in Figure 3, the home page is

displayed and shows the links to create,
update, or delete the entities.
 b. From the home page, click on

Show All Seller Items; then click
Create New Seller and add a new
seller, as seen in Figure 4.

3. Test the RESTful Web services
availability:

 a. Open your browser and type the re-
source URL http://localhost:8080/
AuctionApp/resources/sellers.

As seen in Listing 4, the XML rep-
resentation of the resource (Seller) is
displayed. You can see all Sellers you
already created in XML format.

Conclusion
We have seen how NetBeans can help
to quickly develop a Java EE application
that features RESTful Web services as
well as an interface based on JavaServer

Faces. The integration of REST with
Jersey has shown how Web services can
make functionality reusable and the
system as a whole more flexible.

In Part 2, I will discuss Web services
and the JSON framework. In Part 3, I will
cover JAX-WS Web services. ●

See all listings as text

Figure 2

Figure 3

Figure 4

LEARN MORE
•	The Jersey project home page

•	Roy T. Fielding’s dissertation defining the
REST architectural style

•	 JavaServer Faces

•	Download the source code for this article

@XmlElement
public Long getId() {
 return (expandLevel > 0) ? entity.getId() : null;
}
@XmlAttribute
public URI getUri() {
 return uri;
}

LISTING 3 LISTING 4

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://localhost:8080/AuctionApp/resources/sellers
http://localhost:8080/AuctionApp/resources/sellers
http://www.oracle.com/ocom/groups/public/@otn/documents/webcontent/427743.html
http://jersey.java.net/
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
http://www.oracle.com/technetwork/java/javamagazine/intro-restful-project-423377.zip
javascript:openPopup('p19_listing4')

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

20

blog

JA
VA

 T
EC

H
CO

M
M

UN
IT

Y
JA

VA
 IN

 A
CT

IO
N

AB
OU

T
US

Showtime!
Java 7 Is Here
Java Platform, Standard

Edition (Java SE) is the core
Java platform for general-

purpose computing. The
Java SE 7 release addresses
a number of important ar-
eas, reflecting trends in the
programming community,
developments in hardware
architectures, and a con-
tinuing commitment to the
success of Java technologies.
Java SE 7 (Java 7) will support
the creation of maintainable,
scalable, high-performance
Java applications across a
broad range of computing
environments. Mark Rein-
hold, chief architect of the
Java Platform Group at Or-
acle, discusses key features
and advantages for develop-
ers in the Java SE 7 release.

Oracle’s Mark Reinhold talks with Java Magazine about the most
important features in Java SE 7. BY MICHAEL MELOAN

Java Magazine: What are the most important
aspects of Java SE 7 for developers, system
architects, and the entire Java enterprise?
Reinhold: There are four tent poles in this
release: Project Coin (JSR-334, a set of small
language enhancements), the new
invokedynamic bytecode instruction (JSR-292),
New I/O Part 2 (JSR-203), and the fork/join
framework. Each of these offers new and valu-
able options for developers.PHOTOGRAPHY BY BOB ADLER

ART BY I-HUA CHEN

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

21

blog

JA
VA

 T
EC

H
CO

M
M

UN
IT

Y
JA

VA
 IN

 A
CT

IO
N

AB
OU

T
US

Project Coin’s mission was to make every-
day programming tasks easier. The initiative
was led by Oracle’s Joe Darcy, who began it as
an OpenJDK project about two years ago. He
prioritized a large number of requests, many
from outside the company, and came up
with a good set of improvements. One is the
diamond, <>, which is used when construct-
ing an object whose type is an instance of a
generic type. Before Project Coin, it was nec-
essary to write the full generic type in angle
brackets on both sides of the assignment
statement. Now you can write the full type
just on the left side, and on the right side you
can use an empty type parameter, <>, and the

compiler infers the type on the right side.
For example:

can be more compactly rewritten as

Another valuable feature of Project Coin
is the try-with-resources construct, which
addresses a correctness problem that has
been implicit in Java APIs from the beginning.

When an API allocates external resources,
such as sockets, frame buffers, or file descrip-
tors, the application needs to ensure that they
are properly released or closed so that those
limited resources can be reused. Prior to
Project Coin, that was accomplished through
the very careful application of try-catch blocks.
To handle more than one resource correctly,
however, you need multiple levels of nested
try-catch blocks. Getting that right is some-
what tricky and often done incorrectly.

The try-with-resources feature extends the
syntax of the existing try construct. In the top
of a try block, for example, you can create a re-
source and then, within the body, use it as you

Map<String, List<String>> myMap =
 new HashMap<String, List<String>>();

Map<String, List<String>> myMap =
 new HashMap<>();

Mark Reinhold, chief
architect of the Java
Platform Group at Oracle,
and his team discuss new
features in Java SE 7.

SIMPLE CHANGE

Project Coin
simplifies everyday
programming tasks
with features such
as the diamond
and the try-
with-resources
construct.

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

22

blog

JA
VA

 T
EC

H
CO

M
M

UN
IT

Y
JA

VA
 IN

 A
CT

IO
N

AB
OU

T
US

Moving Java Forward:
A Video Discussion
About Java 7

normally would. There’s no need for any catch
clauses because the compiler generates all
the logic necessary to make sure the resource
is properly closed upon exiting the block.

Listing 1 uses a try-with-resources con-
struct to automatically close a java.sql
.Statement object.

Project Coin also offers developers the op-
tion of using string constants in switch state-
ments, which is a definite ease-of-coding im-
provement. Before Project Coin, only integral
values and instances of enum types could be
used in switch statements.
Java Magazine: Is support for asynchronous
I/O operations the key feature of New I/O
Part 2 (a.k.a. “NIO.2”)?
Reinhold: Yes. The asynchronous I/O API will
be very useful for certain kinds of high-end
server apps and other software that requires
massive I/O throughput. Java SE 7 also of-
fers a true file system API. The platform has
always been somewhat limited in support for
interaction with file systems. For example,
simple operations such as creating symbolic
links, checking file permissions, and being
able to request callbacks when a file is up-
dated are very common facilities in operating
systems today. All of that is now available in
an API that is part of the standard.

In the early days of Java, platform indepen-
dence was a prime directive. Often that was
appropriate, but it was sometimes painful.
That’s why the original file system API was
intentionally somewhat rudimentary. In this
new file system API, some platform-specific
features are exposed. It’s like an onion. The
first layer defines platform-independent op-
erations that work the same way everywhere.
Beneath that layer, however, things become
more platform-specific. For instance, if you

need to look at a POSIX access control list,
you can peel a layer back and use support for
that feature when in a POSIX environment,
and you can do likewise for features that are
specific to a Windows environment.
Java Magazine: Today, multicore processors
are becoming the norm. How can develop-
ers utilize the fork/join framework to their
advantage?
Reinhold: The fork/join API makes it very
straightforward to take a problem that can
be decomposed in a recursive manner and
spread the work required to solve it across an
arbitrary number of processor cores. If the
divide-and-conquer strategy is applicable to
a given problem, then fork/join is often a very
good fit. It takes care of all the concurrency
details for you.
Java Magazine: Can you describe an applica-
tion environment where fork/join would be

particularly useful?
Reinhold: Image processing is a good ex-
ample. Many of the classic image processing
algorithms decompose recursively in a very
natural way. The image is broken up, and
fork/join tasks are assigned to process those
segments. Large array computations are
another good example. It’s fairly straightfor-
ward to recursively decompose some prob-
lems so that subcomputations focus on just
parts of the array simultaneously, after which
the results are aggregated back into a single
value or a vector.
Java Magazine: What does the invokedynamic
bytecode instruction deliver for developers?
Reinhold: The invokedynamic instruction is
not useful for the Java language as it is de-
fined today. The main goal of invokedynamic is
to facilitate the compilation of dynamic lan-
guages down to Java bytecodes. This allows

See listing as text

public static void viewTable(Connection con) throws SQLException {
 String query = "select COF_NAME, PRICE from COFFEES";
 try (Statement stmt = con.createStatement()) {
 ResultSet rs = stmt.executeQuery(query);
 while (rs.next()) {
 String coffeeName = rs.getString("COF_NAME");

 float price = rs.getFloat("PRICE");

 System.out.println(coffeeName + ": " + price);
 }

 }
}

LISTING 1

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.oracle.com/ocom/groups/public/@otn/documents/webcontent/427734.html
javascript:var w=window.open('http://www.oraclejavamagazine-digital.com/javamagazine/misc/video_page22.html','_blank','left=300,top=400,width=400,height=250;location=no');

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

23

blog

JA
VA

 T
EC

H
CO

M
M

UN
IT

Y
JA

VA
 IN

 A
CT

IO
N

AB
OU

T
US

for the implementation of languages such
as Ruby on top of the Java virtual machine
(JVM). The problem it solves is not dynamic
typing per se, but rather dynamic method
dispatch. Languages such as Ruby, Small-
talk, and JavaScript have patterns of method
dispatch that depend on runtime information
in a way that the Java method dispatch does
not. The invokedynamic instruction enables
that dispatch to be expressed at the bytecode
level in a way that the JVM can optimize it as
efficiently as it optimizes typical Java method
dispatch patterns. In terms of performance,
the potential improvements in dynamic
language execution are dramatic. We’ve been
working closely with Charles Nutter, the lead
developer on JRuby. He’s had a great deal of
influence on the invokedynamic design and
implementation. He’s using it in JRuby today
and getting good results.
Java Magazine: Given that invokedynamic will
facilitate interoperability between languag-
es, what would be a typical scenario where
a developer might build a hybridized Java/
Ruby application?

Reinhold: Dynamic lan-
guages such as Ruby can
offer higher levels of devel-
oper productivity for some
kinds of applications. Many
developers find that they’re
more productive writing Web
front ends in Ruby. So a Ruby
front end coupled with Java
on the back end for handling
complex business logic, for
example, could be a power-
ful combination.

Another example is de-
velopers whose IT organiza-

tions only allow them to deliver Java Platform,
Enterprise Edition (Java EE) components into
an application server. Using the regular Ruby
interpreter in an environment like that is just
not an option. JRuby, however, can be bun-
dled inside a WAR file together with a Ruby
Web app. It looks just like another Java appli-
cation, even though on the inside it contains
a Ruby runtime and Ruby code. So, additional
flexibility is provided for developers facing
those kinds of constraints.
Java Magazine: Will invokedynamic be lever-
aged in future Java releases?
Reinhold: Quite possibly. Project Lambda is
slated to add closures to Java in the Java SE 8
release. The current prototype implementa-
tion uses invokedynamic as an efficient way
to implement Lambda expressions. Even
though invokedynamic was originally aimed
at the problem of making other languages
compile and perform well, it turns out that
it will also be beneficial for Java itself in the
longer term.
Java Magazine: How important have external
contributors been to this release?

Reinhold: Very. Sun open-sourced the JDK in
2007, and Oracle continues to place a high
value on the participation of external contrib-
utors. The fork/join framework was devel-
oped by Professor Doug Lea at SUNY Oswego;
the new sound synthesizer was contributed
by open source developer Karl Helgason; and
the new graphics pipeline for Java 2D was
written by Clemens Eisserer, the winner of the
OpenJDK Innovators’ Challenge a few years
ago. It’s great to have that level of external
participation, which makes yet more innova-
tion available to the entire Java ecosystem.
Java Magazine: Any closing remarks about the
Java SE 7 release?
Reinhold: Yes: Go forth, download, and have
fun! ●

LEARN MORE
•	 JDK 7 Features

•	 JDK 7 Preview Release Downloads

•	Project Coin

•	 JSR-334: “Small Enhancements to the
Java Programming Language”

•	 JSR-292: “Supporting Dynamically Typed
Languages on the Java Platform”

•	 JSR-203: “More New I/O APIs for the Java
Platform (“NIO.2”)”

•	Fork/join framework (PDF)

•	Mark Reinhold’s blog

•	 Joe Darcy’s Oracle blog

Mark Reinhold and Java
SE product managers
discuss final testing
and launch plans for
Java SE 7.

Michael Meloan began his professional career writing
IBM mainframe and DEC PDP-11 assembly languages.
He went on to code in PL/I, APL, C, and Java. In addi-
tion, his fiction has appeared in WIRED, BUZZ, Chic,
L.A. Weekly, and on National Public Radio. He is also a
Huffington Post blogger.

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://openjdk.java.net/projects/jdk7/features/
http://jdk7.java.net/
http://openjdk.java.net/projects/coin/
http://www.jcp.org/en/jsr/detail?id=334
http://www.jcp.org/en/jsr/detail?id=334
http://www.jcp.org/en/jsr/summary?id=292
http://www.jcp.org/en/jsr/summary?id=292
http://www.jcp.org/en/jsr/summary?id=203
http://www.jcp.org/en/jsr/summary?id=203
http://gee.cs.oswego.edu/dl/papers/fj.pdf
http://mreinhold.org/blog/
http://blogs.oracle.com/darcy/

http://www.nsoftware.com

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

JA
VA

 T
EC

H

25

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//java architect /

Having written extensively
about the Java language since

its original 1.0 version, I have
watched it evolve, mature, and
grow with every major release.
Each new version added features
that responded to the needs and
desires of the programmers who
used the language. This process of
ongoing refinement and adapta-
tion helped secure the dominance
of Java in the world of program-
ming. It also kept the language
fresh, vibrant, and alive.

One thing I have always found
interesting about the evolution
of Java is that sometimes it took
quite a while for a new feature to
really catch on—to
fully mainstream.
The best example
of this is generics,
which were added by
JDK 5. Generics fun-
damentally expanded
the power of the
language and the re-
liability of programs.
They also added a

completely new syntax element
and a new way to think about
writing Java code. Because gener-
ics were such a large change, it
took some time before the use of
generics became commonplace.

With the release of JDK 7, Java
is once again evolving, respond-
ing to the needs of programmers.
And once again, new features
have been added that expand
the power and scope of the lan-
guage. However, unlike some of
the additions in the past, which
have been slow to catch on, the
new language features in JDK
7 will change the way you write
code today.

As you might know,
the new language
features in JDK 7 were
developed by Project
Coin. The purpose
of Project Coin was
to identify a number
of small changes to
the Java language
that would be incor-
porated into JDK 7.

But here’s the interesting thing.
Although these new features are
collectively referred to as small,
the effects of these features will
be quite large in terms of the code
they affect. Simply put: for many
programmers, the Project Coin
changes will be the most impor-
tant new features in JDK 7.

To understand why, let’s con-
sider the following list of Project
Coin additions.
■■ An expanded try statement,

called try-with-resources, sup-
ports the automatic closing of a
resource, such as a file stream.

■■ Type inference (via diamond) is
provided when constructing a
generic instance.

■■ Enhanced exception handling,
in which two or more unrelated
exception types can be caught
by a single type, was added,
plus better type checking for
exceptions that are rethrown.

■■ A string can now control a
switch statement.

■■ There is support for binary
integer literals with the new

prefix 0b or 0B—for example,
0b1010.

■■ Support for underscores in
numeric literals, such as
59_234_412, was added. The
underscores are ignored by the
compiler, but they add clarity
to long numeric values.

■■ Compiler warnings associated
with varargs methods that have
nonreifiable parameters have
been improved, and you have
more control.
All are the types of things that

programmers have been want-
ing—and waiting for. All stream-
line or simplify some previously
difficult or tedious tasks. All help
you write better, more error-free
code. While there isn’t space to
examine each of these features
here, it’s useful to look at ex-
amples from both ends of the
“change spectrum.”

Binary Literals and Underscores
in Numeric Literals
Let’s begin with the two features
that would seem, justifiably, to be

JDK 7 Will Change the Way
You Write Code—Today!
New features in JDK 7 reduce errors and make several difficult or tedious tasks easier.

HERB SCHILDT
BIO

SMALL CHANGE

For many
programmers, the
Project Coin changes
will be the most
important new
features in JDK 7.

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.oracle.com/technetwork/java/javase/overview/index.html
http://openjdk.java.net/projects/coin/
http://openjdk.java.net/projects/coin/
javascript:openPopup('bio_p25')

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

JA
VA

 T
EC

H

26

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//java architect /

called small changes: the ability to spec-
ify a binary literal and to use underscores
in a numeric literal. At first glance, these
seem like nearly inconsequential addi-
tions, hardly worth mentioning, but the
opposite is true. Not only do they add
convenience, they help prevent errors.

For example, consider a situation in
which some specific bit pattern is re-
quired, perhaps for use as a bit mask.
Obviously, one normally thinks about
a bit pattern in terms of binary. Thus, it
would be helpful to specify a bit pattern
using a binary literal. The trouble was
that, in the past, there were no binary
literals. This meant that a different
approach was required, of which there
were several.

For instance, if the bit pattern 0110
1101 was needed, you might have used
Byte.parseByte("01101101", 2), but this
involves a method call. If what you
wanted was an actual literal, it was not
uncommon to press a hexadecimal
literal into service. For example, who
hasn’t seen something like this?

Here, the value is encoded as the
hexadecimal literal 0x6D, and the com-
ment depicts the bit pattern. This ap-
proach is not, however, without prob-
lems, one being that it is possible to
make a mistake when converting from
binary into hexadecimal, resulting in the
wrong bit pattern. (Maybe your finger
presses the wrong key on the calculator,
and you don’t catch it.) Unfortunately,
such a mistake could result in a bug that

is very difficult to find. Alternatively, the
value might be right, but the bit pattern
in the comment might be wrong, thus
misleading anyone reading the code.

With JDK 7, you can eliminate the pos-
sibility of such errors because you can
now use a binary literal to specify a bit
pattern. For example:

Here, the value is encoded directly by
a binary literal. This means that there
is no chance for conversion errors, and
the bit pattern is self-documented.
Thus, you have a direct, visual repre-
sentation of precisely the bit pattern
you wanted—a much more reliable,
transparent approach.

You can further enhance the readabil-
ity of a binary value by inserting under-
scores, like this:

Although useful here, underscores in
large binary values are even more valu-
able. For example, which of the follow-
ing values is easier to read?

Even though binary literals and un-
derscores in numeric values are two of
the smallest of the “small” language
enhancements, they both offer signifi-
cant improvements that let you write
code with greater clarity and less chance
for error.

Try-with-Resources Statement
If binary literals and underscores in
numeric values are on one end of the
change spectrum, at the other end is
try-with-resources. I consider try-with-
resources to be the single most impor-
tant new language feature added by JDK
7. It not only addresses a long-standing
issue, it also prevents an entire class of
errors. One of the thorniest things about
handling resources, such as file streams,
is ensuring that they are closed when
they are no longer needed. Forgetting
to close a resource can lead to memory
leaks and other problems. The try-with-
resources statement automates the
closing process, and it does so in an
elegant way.

To understand the importance of
try-with-resources, let’s begin by review-
ing an example of the type of situation
it is designed to improve. As you know,

working with a file has traditionally in-
volved three separate actions. You need
to open the file, use the file, and then
close the file. Prior to JDK 7, you might
have used some variation of the code
shown in Listing 1.

Notice that the file stream is closed
in the finally block, which is automati-
cally executed in all cases when the try
block is left. In this example, fIn is ini-
tially assigned null. Then, the try block
is entered. If fIn is successfully opened,
fIn is given a non-null value. If an error
opening the file occurs, fIn remains null.
When the try block ends (either normally
or because of an exception), the finally
block is executed. Then, if fIn is not null,
it means that the file was successfully
opened and must be closed. Otherwise,
an error has occurred, in which case the
call to close() is not executed. Because
close() can also cause an exception, it,

byte myBits = 0x6D; // 0110 1101

byte myBits = 0b01101101;

byte myBits = 0b0110_1101;

0b0110110111000111
0b0110_1101_1100_0111

See all listings as text

FileInputStream fIn = null;
try {
 fIn = new FileInputStream("somefilename");
 // Access the file ...
} catch(IOException e) {
 // ...
} finally {
 // Close file.
 try {
 if(fIn != null) fIn.close();
 } catch(IOException e) {
 // ...
 }
}

LISTING 1

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.oracle.com/ocom/groups/public/@otn/documents/webcontent/427740.html

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

JA
VA

 T
EC

H

27

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//java architect /

too, is wrapped in its own try block. Of
course, there are many variations of this
sequence, including those that throw
exceptions to a calling routine, but no
matter how it was implemented, the file
still needs to be explicitly closed in the
finally block.

When used correctly (and consis-
tently), the preceding sequence does
ensure that the file associated with fIn
is properly closed. There are, of course,
also troubles with this approach. First,
it is still possible to forget to close a file.
For example, in the case in which several
files are being accessed
within the same try block, a
programmer might inad-
vertently forget to close
one in the finally block. It is
also possible to commit a
coding error that prevents
the file from being closed.
Let me give you a simple
example from my own
experience.

A while back, I was work-
ing on some code for use
as an example in one of
my books. I was using a
sequence similar to that shown above.
However, when it came time to close
the file, I typed the following line in the
finally block:

Can you see the problem? Instead of
using != in the if statement, I acciden-
tally typed ==. As a result, an attempt
to close the file would be made only if

the file wasn’t open!
Fortunately, I caught the mistake.

But if I hadn’t, it would have resulted in
a bug that could have been difficult to
discover. The only way the error would
have been apparent is when an attempt
to open the file failed. (In that case, fIn
would still be null, and the call to close()
would generate a null-pointer excep-
tion.) However, in the example I was de-
veloping, that was a very unlikely event.
In general, the file would have opened
successfully and no symptoms would
have been displayed, except that the

resources associated with
the file would have never
been released. Therefore,
inadvertently typing ==
instead of != created a re-
source leak, but the overall
code sequence still “looked
right.” Fortunately, with
JDK 7, such sources of error
are a thing of the past.

The try-with-resources
statement performs two
functions. First, it declares
and initializes a resource,
such as a file stream.

Second, when the try block ends, the
resource is automatically closed. In the
case of a file stream, this means that
the file is automatically closed. You no
longer need to call close() explicitly.

Listing 2 shows how by using try-
with-resources, the preceding sequence
can be rewritten. Notice how fIn is now
declared and initialized within the try
statement, instead of requiring a sepa-
rate step.

Not only is the code in Listing 2 much
shorter code, it also ensures that fIn will
be closed in all cases. When the try block
is left (whether normally or because
of an exception), fIn is automatically
closed. You can’t forget to close it, and
a programming mistake can’t prevent it
from being closed.

At this point, one thought might
have occurred to you. If an I/O excep-
tion occurs inside the try block, and if
another I/O exception occurs when the
file stream is automatically closed, what
happens to those two exceptions? In
such a case, the first one is thrown and
the other is added to the suppressed
exception list. You can obtain this list
by calling the getSuppressed() method
defined by Throwable. This is another
benefit of try-with-resources.

One other thing: try-with-resources
can manage any resource that imple-
ments the new AutoCloseable interface.
So, it’s not just for file streams.

Because try-with-resources stream-
lines your code, prevents resource leaks,
and in the process makes your code
more resilient, it is hard to argue against
it. It is a major, powerful addition to the
language. Yes, it really is that important.

In my view, try-with-resources is some-
thing that every Java programmer will
want to start using right away.

Conclusion
Of course, I feel strongly about all the
other new language features in JDK 7,
too. For example, type inference via
diamond simplifies the syntax for cre-
ating generic instances; the ability to
catch multiple exceptions with a single
catch statement reduces code bloat;
and the ability to use a string with a
switch answers a long-standing need.
(Who hasn’t, at one time or another,
wanted the ability to control a switch
with a string?) Combined, the new JDK
7 language features add real benefits to
the language, and they make our lives
as programmers a little easier. Simply
put, these features are just too useful
to ignore. ●

if(fIn == null) fIn.close();

See all listings as text

LEARN MORE
•	Project Coin

•	Project Coin mailing-list archives

•	Blogs about Project Coin

•	Project Coin: JSR-334 in Public Review

•	 JSR-334 documents and public reviews

try(FileInputStream fIn = new FileInputStream("somefilename")) {
 // Access the file ...
} catch(IOException e) {
 // ...
}

LISTING 2

TRY IT, YOU’LL LIKE IT

try-with-resources
is a major, powerful
addition to the
language. Yes, it
really is that
important. Start
using it now.

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.oracle.com/ocom/groups/public/@otn/documents/webcontent/427740.html
http://openjdk.java.net/projects/coin/
http://mail.openjdk.java.net/mailman/listinfo/coin-dev
http://blogs.oracle.com/main/tags/projectcoin
http://blogs.sun.com/darcy/entry/project_coin_jsr_334_pr
http://www.jcp.org/en/jsr/detail?id=334

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

JA
VA

 T
EC

H

28

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//java architect /

When Sun was developing
the Java platform, it did

not encourage developers to run
other programming languages
on the Java virtual machine
(JVM). As a matter of fact, Sun
wanted developers to use Java
as the foremost programming
language for enterprise devel-
opment. Ten years later, close
to the release of Java Platform,
Standard Edition 7 (Java SE 7),
this goal has been accomplished.

Developers recognize the ex-
traordinary value in the Java plat-
form and in the JVM as a deploy-
ment vehicle. However, they also
recognize that the Java platform
isn’t always the best tool. New
and old languages, such as Ruby
and Python, have been reimple-
mented, for example, as JRuby
and JPython, to run on the JVM.

Why have developers bothered
to reimplement these languages
rather than use their original C
counterparts? Developers could
have instead converted their old

code to Java, but implementations
such as JRuby and JPython can
take advantage of the following
unique JVM features:
■■ High optimization
■■ Cross-platform compatibility

and portability
■■ Open source
■■ Access to standard Java libraries
■■ Multithreading
■■ Garbage collection
■■ Better performance in large en-

terprise systems with multiple
processors

■■ Widespread popularity and
large installed base
The difficulty in implementing

a language for the JVM is that
the JVM was made for Java. This
means that if the language you
want to reimplement has dif-
ferent object or method resolu-
tion mechanics than Java, the
JVM might not work very well.
In particular, the one feature
that makes it difficult to imple-
ment Ruby and Python on the
JVM is that they are dynamically

typed languages, while Java is a
statically typed language. This is
where the new bytecode instruc-
tion, invokedynamic, comes in. It
can simplify and improve the im-
plementation of compilers and
runtime systems for dynamically
typed languages on the JVM.

The Difference Between
Statically and Dynamically
Typed Languages
Java is a statically typed language.
This means it performs type
checking at compile time. Type
checking is the process of verify-
ing that a program is type-safe. A
program is type-safe if the argu-
ments for all its operations are
the correct type.

Ruby and Python are dynami-
cally typed languages. This means
they perform type checking at
runtime. These languages typi-
cally do not have any type infor-
mation available at compile time,
so the type of an object can be
determined only at runtime.

Statically Typed Languages
Are Not Necessarily Strongly
Typed Languages
A programming language that
features strong typing speci-
fies restrictions on the types of
values supplied to its operations.
If a computer language such as
Java implements strong typing, it
prevents the execution of an op-
eration if its arguments have the
wrong type. Conversely, a lan-
guage that features weak typing
would implicitly convert (or cast)
the arguments of an operation if
those arguments have wrong or
incompatible types.

Statically typed programming
languages can employ strong
typing or weak typing. Similarly,
dynamically typed languages
can also apply strong typing or
weak typing. For example, Ruby
is dynamically typed and strongly
typed. Once a variable has been
initialized with a value of some
type, Ruby will not implicitly
convert the variable into another

Dynamically Typed Languages and
the invokedynamic Instruction
The new invokedynamic instruction enables a runtime system to customize the linkage between a call site and
a method implementation, instead of using hardwired linkage behavior.RAYMOND GALLARDO

BIO

PHOTOGRAPH BY
GENEVIÈVE ARBOIT

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.oracle.com/technetwork/java/javase/overview/index.html
http://www.oracle.com/technetwork/java/javase/overview/index.html
mailto:raymond.gallardo%40oracle.com?subject=
javascript:openPopup('bio_p28')

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

JA
VA

 T
EC

H

29

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//java architect /

datatype. For example, Ruby would not
allow the following:

In this example, Ruby will not im-
plicitly cast the number 2, which has a
Fixnum type, to a string.

The Challenge of Compiling
Dynamically Typed Languages
Consider the following dynamically
typed method (of a hypothetical pro-
gramming language), addtwo, which
adds any two numbers (that can be of
any numeric type) and returns the sum:

Suppose your organization is imple-
menting a compiler and runtime sys-
tem for the programming language in
which the method addtwo is written.
In a strongly typed language, whether
typed statically or dynamically, the
behavior of + (the addition operator)
depends on the types of
the operands.

A compiler for a statical-
ly typed language chooses
which implementation of
+ is appropriate based on
the static types of a and b.
For example, a Java com-
piler implements + with
the iadd JVM instruction if
a and b are of type int. The

addition operator will be compiled to
a method call because the JVM’s iadd
instruction requires the operand types
to be statically known.

In contrast, a compiler for a dynami-
cally typed language must defer the
choice until runtime. The statement
a + b would be compiled as the method
call +(a, b), where + is the method
name. (Note that a method named + is
permitted in the JVM but not in the Java
programming language.) Suppose then
that the runtime system for the dynam-
ically typed language is able to identify
that a and b are variables of type int.
The runtime system would prefer to call
an implementation of + that is special-
ized for integer types rather than arbi-
trary object types.

The challenge of compiling dy-
namically typed languages is how to
implement a runtime system that can
choose the most appropriate imple-
mentation of a method or function—
after the program has been compiled.
Treating all variables as objects of type
Object would not work efficiently; the
Object class does not contain a method
named +.

The invokedynamic
Instruction
Java SE 7 introduces the
invokedynamic instruction,
which enables the runtime
system to customize the
linkage between a call site
and a method implemen-
tation. This contrasts with
other JVM instructions,

such as invokevirtual, in which linkage
behavior specific to Java classes and
interfaces is hardwired by the JVM.

In the previous addtwo example, the
invokedynamic call site is +. An invoke-
dynamic call site is linked to a method
by means of a bootstrap method, which
is a method specified by the compiler
for the dynamically typed language that
is called once by the JVM to link the call
site. The object returned from the boot-
strap method permanently determines
the call site’s behavior.

Listing 1 shows an example of an
invokedynamic instruction. Note that
this example uses the syntax of the
ASM Java bytecode manipulation and
analysis framework, and line breaks
have been added for clarity.

In this example, the runtime system
links the dynamic call site specified by
the invokedynamic instruction (which is
+, the addition operator) to the method
IntegerOps.adder. (The IntegerOps class
belongs to the library that accompa-
nies the dynamic language’s runtime

system your organization is implement-
ing.) It does this by using the bootstrap
method Example.mybsm, which your
organization is responsible for writing.

Java SE 7 introduces the package
java.lang.invoke, which contains an API
that is essential for writing bootstrap
methods, including the new datatype
MethodHandle. A method handle is a
typed, directly executable reference
to an underlying method, constructor,
field, or similar low-level operation. The
java.lang.invoke package includes other
methods that create and manipulate
method handles. ●

a = "40"
b = a + 2

def addtwo(a, b)
 a + b;
end

See listing as text

LEARN MORE
•	 Java Virtual Machine Support for

Non-Java Languages

•	 java.lang.invoke Package

•	The Da Vinci Machine Project

•	 John Rose’s blog at oracle.com (John
Rose is the project lead for the Da Vinci
Machine Project and the specification
lead for the invokedynamic instruction.)

NEW BYTECODE

invokedynamic can
simplify and improve
the implementation
of compilers and
runtime systems.

invokedynamic InvokeDynamic
 REF_invokeStatic:
 Example.mybsm:
 "(Ljava/lang/invoke/MethodHandles/Lookup;
 Ljava/lang/String;
 Ljava/lang/invoke/MethodType;)
 Ljava/lang/invoke/CallSite;":
 +:
 "(Ljava/lang/Integer;
 Ljava/lang/Integer;)
 Ljava/lang/Integer;";

LISTING 1

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://asm.ow2.org/
http://www.oracle.com/ocom/groups/public/@otn/documents/webcontent/427737.html
http://openjdk.java.net/projects/mlvm/
http://blogs.oracle.com/jrose/
http://download.oracle.com/javase/7/docs/technotes/guides/vm/multiple-language-support.html
http://download.oracle.com/javase/7/docs/api/java/lang/invoke/package-summary.html

Copyright © 2011, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. 11060728

Oracle Technology Network:
Your Java Nation.
Come to the best place to collaborate with
other professionals on everything Java.

Oracle Technology Network is the world’s largest community
of developers, administrators, and architects using Java and
other industry-standard technologies with Oracle products.
Sign up for a free membership and you’ll have access to:

• Discussion forums and hands-on labs
• Free downloadable software and sample code
• Product documentation
• Member-contributed content

Take advantage of our global network of knowledge.

JOIN TODAY Go to: oracle.com/technetwork/java

http://www.oracle.com/technetwork/java

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

JA
VA

 T
EC

H

31

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//rich client /

The JavaServer Faces (JSF) 2.0
specification builds on the

success and lessons from the last
six years of usage of the JSF 1.0
specification. It takes inspiration
from Seam and other Web frame-
works and incorporates popular
agile practices, such as conven-
tion over configuration and an-
notation over XML. This results in
a more streamlined framework.
Highlights include standard-
ized Ajax support; Facelets as
the default view technology; and
custom composite components,
which finally make component
authoring straightforward and
even enjoyable.

This article explores how these
new features can be utilized to
facilitate embedding rich client
applications. Adobe Flex has been
a popular rich internet application
framework. JavaFX, while relative-
ly new, builds on top of the Java
platforms and has attracted much
attention. There has been con-
stant interest in integrating rich
clients into Java Web applications.

With JSF 2.0 and its focus on sim-
plified development, integration
has become easier than ever.

We start with a sample Flex pie
chart application that displays
the results of a survey about the
popularity of ice cream flavors. A
JSF composite component is used
to encapsulate the embedding.
Next, instead of hard-coding,
the survey result is passed to
the Flex application from a JSF
managed bean. Then, we further
enhance the sample by adding
server round-trips that submit a
user’s choice of the favorite flavor.
Finally, we reimplement the chart
in JavaFX and show how to embed
it into the JSF application.

Running the Sample
The source code for the sample
application is available here.

The application is developed
using Flex SDK 4.1, JSF Mojarra
Implementation 2.0.2, and
JavaFX SDK 1.3.1. NetBeans
6.9.1 is used as the IDE, which
already bundles the latter two

libraries. The three attached
projects are SampleChartFlex,
SampleChartFX, and SampleWeb.

To run the Web application
inside NetBeans, open these proj-
ects using NetBeans, right-click
project SampleWeb, and run.

To modify and compile the Flex
project, you need to install Flex
SDK and modify SampleChartFlex/
build.xml to point to the Flex SDK
installation location (see Listing 1).

Afterward, you can invoke the
Build command from NetBeans to
build these projects. The ant build
files of both the SampleChartFlex
and SampleChartFX projects are
customized so that the pack-
aged swt or jar files are copied into
project SampleWeb automatically
during the build.

Creating the Application
First, we create a simple pie chart
application in Flex to display the
popularity of ice cream flavors
(see Figure 1). You click a chart
item, and then the message label
displays your choice.

The Flex application consists of
a pie chart and a message label.
The pie chart data is provided by
function getChartData(), as seen
in Listing 2. When a user clicks
a chart item, onItemClick pro-
cesses the event and updates the
message label. The source file is
compiled into SampleChartFlex
.swf using mxmlc. The provided
sample project SampleChartFlex
has customized its ant build.xml
file, which invokes mxmlc when
you build the project.

Embedding the Flex Application
To embed the Flash object into
our JSF Web application, we first
add SampleChartFlex.swf into folder

Using Adobe Flex and JavaFX
with JavaServer Faces 2.0
Take advantage of new features in JSF 2.0 and integrate Adobe Flex and JavaFX into your JSF applications.

RE LAI
BIO

Figure 1

strawberry

chocolate vanilla

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.javaserverfaces.org/
http://www.adobe.com/products/flex
http://javafx.com
http://www.oracle.com/ocom/groups/public/@otn/documents/webcontent/428134.zip
http://opensource.adobe.com/wiki/display/flexsdk/Flex+SDK
http://netbeans.org
http://opensource.adobe.com/wiki/display/flexsdk/Flex+SDK 4
http://opensource.adobe.com/wiki/display/flexsdk/Flex+SDK 4
http://help.adobe.com/en_US/flex/using/WS2db454920e96a9e51e63e3d11c0bf69084-7fcc.html
mailto:re.lai%40oracle.com?subject=
javascript:openPopup('bio_p31')

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

JA
VA

 T
EC

H

32

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//rich client /

resources/demochart of the Web content of
our JSF application project SampleWeb.
We create a composite component to
encapsulate the embedding.

Composite components are a new
facility in JSF 2.0 that tremendously
eases the development of custom com-
ponents. You no longer need to worry
much about encoding, decoding, tag
library descriptors (TLDs), and renderers.
You simply declare a Facelet composite
component file and use it, similar to the
acclaimed custom tag support in Grails.
Listing 3 shows our custom component
demo:chart.

The open source SWFObject is used to
embed the Flash content. The JavaScript
file, swfobject.js, can be found under

folder templates\
swfobject of the
Flex 4 SDK instal-
lation. Copy it into
folder resources\
demochart of our
Web content.

To mitigate
name conflicts,
our local variables
are defined in an
anonymous func-
tion and the div
HTML element ID
is prefixed with the
composite compo-
nent client ID.

Now that we’ve
created the cus-
tom component,
we can use tag
demo:chart just

like any other JSF tags. It is transparent
that Flex is used in the implementation.
Listing 4 shows an example.

Passing Variables to Flex Applications
More often than not, embedded Flex ap-
plications rely on dynamic data. It turns
out to be easy to pass variables into Flex
applications with the help of flashVars.

This section extends our sample chart
by passing the ice cream flavor survey re-
sult from a JSF managed bean, as shown
in Listing 5. We use the JSF 2.0 annota-
tion to designate a managed bean.

To feed the survey result from the
managed bean to Flex, we first modify
our JSF composite component chart
.xhtml by adding an attribute named
data to the interface section to accept
the survey result and passing the
survey result as flashVars into Flex (see
Listing 6).

Now in the consuming JSF page, we
just need to pass the ice cream flavor
survey result to the demo:chart tag. We
use the following JSF page source code
snippet (index.xhtml):

On the Flex application side, we need
to modify function getChartData to fetch
the parameter. We use the Flex source
code snippet shown in Listing 7.

In this example, the data format is
simple. Therefore, we just parse it using
regular expressions. In more-complicat-
ed cases, consider formal encoding such
as JavaScript Object Notation (JSON).

<demo:chart
 data="#{iceCreamSurvey.result}"/>

See all listings as text

ADOBE TALK

LiveCycle Data
Services would
be particularly
appealing if you
could devote both
the client and server
sides to a complete
Adobe solution, but
open sourcing of
BlazeDS and AMF
makes it possible
to work with other
technologies.

<!-- Change me to your Flex SDK installation location -->
<property name="FLEX_HOME" value="C:/Programs/Adobe/flex_sdk/4.1"/>

LISTING 1 LISTING 2 LISTING 3 LISTING 4 LISTING 5 LISTING 6

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.grails.org/Dynamic+Tag+Libraries
http://code.google.com/p/swfobject/wiki/documentation
http://help.adobe.com/en_US/flex/using/WS2db454920e96a9e51e63e3d11c0bf626ae-7feb.html
http://www.oracle.com/ocom/groups/public/@otn/documents/webcontent/427744.html
javascript:openPopup('p32_listing2')
javascript:openPopup('p32_listing3')
javascript:openPopup('p32_listing4')
javascript:openPopup('p32_listing5')
javascript:openPopup('p32_listing6')

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

JA
VA

 T
EC

H

33

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//rich client /

Using JSF Ajax
In this section, we move on to a more
complicated scenario: round-trip com-
munications between Flex and JSF server
sessions. We’ll use a novel, yet practical,
approach to integrating the best of Flex
and JSF using the JSF 2.0 Ajax feature.

There are several ways Flex applica-
tions can communicate with servers.
LiveCycle Data Services is Adobe’s data
solution that umbrellas several technol-
ogies, including the Java server-based
BlazeDS and Action Message Format.
Flex also provides generic data access
components to communicate with serv-
ers, including HTTP and Web services. In
addition, Flex has good integration with
JavaScript, enabling us to integrate at the
browser side, relaying to the Ajax ap-
plication to communicate with servers.
These approaches can all be used with
JSF, each with pros and cons.

With the arrival of JSF 2.0, the Ajax API
has been standardized. You can exploit
the feature to integrate Flex applications
with JSF. It is in essence integration at
the browser side. We’ll rely on the JSF
Ajax framework to handle session and
view state tracking. Because the JSF Ajax
API is part of the 2.0 specification, it is
guaranteed to be supported by all imple-
mentations. On the server side, it is fairly
transparent that a Flex client is used.
Therefore, this approach is easy to plug in
to an existing JSF application.

The additional JSF Ajax layer conceiv-
ably would add performance overhead.
This should not be an issue for the
majority of Ajax cases, when the data
exchange is small.

We’ll modify our sample by submit-
ting the selection when a user clicks on
a flavor in the pie chart. A JSF managed
bean would process the selection and
reply with a message, which is in turn
displayed in the Flex application. On the
Flex application side, we’ll modify func-
tion onItemClick to use ExternalInterface
to invoke JavaScript function demo.ajax
.submit inside the embedding Web page,
which we will define shortly. Listing 8
shows Flex source code snippets.

Add a callback function named
refresh to update the message label.
The function is exposed to JavaScript via
ExternalInterface.addCallback during
the initialization of the Flex application,
as seen in Listing 9.

For our JSF composite component,
we’ll add one more attribute, response,
in the interface section, which is
mapped to the server response to our
asynchronous submit.

JSF composite component source code
snippets (resources/demo/chart.xhtml):

Next, inside the implementation sec-
tion, define a hidden form to submit to
and receive response from the server:

Add the JavaScript from Listing 10 to
handle the asynchronous submission
and reply.

The function demo.ajax.submit is
invoked by Flex function onItemClick to
submit the request to the server. It uses
the JSF 2.0 JavaScript function jsf.ajax
.request to submit an asynchronous
request using the hidden form with the
following options:
■■ The payload is sent as the pass-

through request parameter named
input.

■■ It instructs the server to render the
child outputText named in the form.

■■ The server response would be
processed by event handler
demo.ajax.onevent.
The demo.ajax.onevent handles the

Ajax submit events. Upon success, it
fetches the response from the output-
Text node, and calls the refresh method
exposed by Flash. It works around
browser differences by trying to fetch the
node text in different ways.

On the JSF server side, add the JSF
managed bean source code snippet to
process the submission (see Listing 11).

In the consuming JSF page, we first
add jsf.js to the page head to enable JSF

<cc:interface>
 <cc:attribute name="data" />
 <cc:attribute name="response" />
</cc:interface>

<h:form id="form"
 style="display:none">
 <h:outputText id="out"
 value="#{cc.attrs.response}"/>
</h:form>

See all listings as text

private function getChartData() : ArrayCollection {
 // Retrieve "data" from flashVars,
 // Formatted as Map.toString(), e.g.,
 // {Strawberry=10, Chocolate=30, Vanilla=60}
 var input : String = Application.application.parameters.data;
 var data : Array = input ? input.split(/\W+/) : [];
 var source = [];
 for (var index : int = 1; index < data.length - 1; index += 2) {
 source.push((flavor: data[index], rank: parseInt(data[index+1])});
 }
 return new ArrayCollection(source);
}

LISTING 7 LISTING 8 LISTING 9 LISTING 10 LISTING 11

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://help.adobe.com/en_US/LiveCycleDataServicesES/3.1/Developing/index.html
http://opensource.adobe.com/wiki/display/blazeds/BlazeDS
http://opensource.adobe.com/wiki/download/attachments/1114283/amf3_spec_05_05_08.pdf?version=1
http://help.adobe.com/en_US/Flex/4.0/AccessingData/WSbde04e3d3e6474c46c45e7b4120d413dc14-8000.html
http://help.adobe.com/en_US/flex/using/WS2db454920e96a9e51e63e3d11c0bf69084-7f17.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/external/ExternalInterface.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/external/ExternalInterface.html?filter_flex=4.1&filter_flashplayer=10.1&filter_air=2#addCallback%28%29
http://javaserverfaces.java.net/nonav/docs/2.0/jsdocs/symbols/jsf.ajax.html#.request
http://javaserverfaces.java.net/nonav/docs/2.0/jsdocs/symbols/jsf.ajax.html#.request
http://www.oracle.com/ocom/groups/public/@otn/documents/webcontent/427744.html
javascript:openPopup('p33_listing8')
javascript:openPopup('p33_listing9')
javascript:openPopup('p33_listing10')
javascript:openPopup('p33_listing11')

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

JA
VA

 T
EC

H

34

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//rich client /

JavaScript inside the page. Here is a JSF
page source code snippet (index.xhtml):

We need to further map the request
parameter input as well as the response
attribute exposed by our custom chart
tag. There are several options to do this.
One way is to utilize a JSF 2.0 enhance-
ment that allows EL action binding to
take variables (see Listing 12).

Another way to do it is to leverage
view parameters. You can map a request
parameter to an EL expression via view
parameters, as seen in Listing 13.

Each approach is interesting in its
own right. The first one involves fewer
configurations. The second one relies on
the view parameter, which is an editable
value holder and can take converters and
validators. When complicated encoding
is needed, the second approach is best.

Integrating with JavaFX
We can similarly implement the chart
application in JavaFX (see Figure 2).

Listing 14 shows the JavaFX source

code (demo.piechart.Main.FX). The
pie chart data is provided by function
getChartData(), as seen in Listing 15.

The code is intentionally similar to our
Flex application. The chart is populated
by a runtime argument named data. We
use AppletStageExtension to invoke the
container page’s JavaScript function
demo.ajax.submit. For JavaFX, it is easy to
expose the callback function refresh. All
script-level public functions are auto-
matically visible to JavaScript in JavaFX.

To embed the JavaFX applet, copy
SampleChartFX.jar and SampleChartFX_
browser.jnlp into the resources/demochart
folder of our Web content. Note the
generated jnlp file by NetBeans points,
by default, to a local codebase. Because
we will specify the jar file location in our
Web page anyway, simply remove the
codebase attributes from the jnlp file.

Afterward, we just need to make mi-
nor changes to our JSF composite com-
ponent to embed the JavaFX applet, as
shown in Listing 16.

Most of the JavaScript code would
continue to work for our JavaFX ap-
plet. The only change is how JavaScript
calls back into JavaFX. Inside the demo
.ajax.onevent function, instead of chart
.refresh(response), it should be chart
.script.refresh(response). To allow the code
to work for both situations, use this:

That’s it. There is no need to change
the consuming JSF page. Whether JSF

or JavaFX is used to provide the chart is
an implementation detail and is totally
transparent to the consuming page.

Conclusion
In this article, we took advantage of new
features in JSF 2.0 to integrate Adobe
Flex and JavaFX into our JSF applica-
tions. These new capabilities free us
from the need to take care of plumbing

on encoding, decoding, and view state
tracking. In particular, we created a
custom component to encapsulate the
embedding of Flex and JavaFX. ●

<h:outputScript
 library="javax.faces"
 name="jsf.js" target="head"/>

chart.refresh?
 chart.refresh(response) :
 chart.script.refresh(response)

See all listings as text

Figure 2

10%

strawberry

chocolate vanilla
60%30%

10%

LEARN MORE
•	 JavaFX

•	Adobe Flex

•	 JavaServer Faces 2.0 download

<demo:chart data="#{iceCreamSurvey.result}"
 response="#{iceCreamSurvey.reply(param.input)}" />

LISTING 12 LISTING 13 LISTING 14 LISTING 15 LISTING 16

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.oracle.com/ocom/groups/public/@otn/documents/webcontent/427744.html
http://javafx.com/
http://www.adobe.com/products/flex/
http://www.oracle.com/technetwork/java/javaee/download-139288.html
javascript:openPopup('p34_listing13')
javascript:openPopup('p34_listing14')
javascript:openPopup('p34_listing15')
javascript:openPopup('p34_listing16')

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

JA
VA

 T
EC

H

35

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//rich client /

Kevin Nilson has been building
complex Web applications for

most of his career. He has realized
that automated developer testing
is the key to building quality Web
applications. Over time, Nilson
has pulled together the best open
source tools and he has written
custom tools to decrease the time
needed to develop high-quality
applications by making testing
a part of the coding process. As
he puts it, “It is easier to fix code
while you are creating your appli-
cations.” Here, he talks with Java
Magazine about his toolset, which
is language agnostic and integrat-
ed with tools such as TestSwarm,
QUnit, jQuery, Hudson, GlassFish
Server Open Source Edition, and
Sun SPOT Java Development Kit.

Why are testing, in general,
and automated testing run
by developers, in particular,
important?
Prioritizing testing in your devel-
oper environment is critical for
creating and maintaining qual-

ity software. The cost of fixing
bugs is directly proportional to
how early they are found. If you
find a bug five minutes after you
write a line of code, you can very
quickly fix the bug. On the other
hand, if you find a bug after it is
two weeks old, it will be much
harder for you to fix the bug. After
two weeks, you might even have
forgotten why you added the code
in the first place.

I always recommend adding
full testing coverage for all new
features. Without automated
regression testing, bugs will haunt
you. It is very common for bugs
that have been fixed to come back
again later. Every time a bug is
found, you should start by writ-
ing a test that exposes the bug
and fails. After a test that fails is
in place, you can then fix the bug.
Once the bug is fixed, the test
should pass and you will know
that you have a test that will fail
if the bug comes back. Over time,
you can easily create a large re-
gression of tests without noticing

the investment. In fact, over time,
you will gain more from the tests
than you have invested in writing
the tests.

As your project’s complex-
ity increases, it takes more time
to manually verify your product.
During most projects, require-
ments change drastically for
complex systems. Often, when
you change or enhance a large
system, you end up inadvertently
introducing bugs.

Automated testing run by de-
velopers during the development
process can greatly speed up the
rate of development. Developers
can run automated tests while
they are coding to see what fea-
tures are not working correctly
and to see what bugs were in-
troduced. The same tests can be
run later as verification prior to
a release.

I spend most of my time writ-
ing frameworks in Java and
JavaScript that are used by sev-
eral projects and many devel-
opment teams. When writing a

framework, you often don’t know
exactly how the framework will
be used. Having strong auto-
mated tests allows me to use the
framework to test scenarios that
are not currently part of a prod-
uct but might be someday.

What unique challenges do
you face when testing Web
applications?
Over the last few years, HTML5
and Web 2.0 have led a trend in
Web applications moving logic
from the server to the browser.
The biggest challenge in writ-
ing Web applications is that your
application must run on many
platforms and many browsers.
Each browser behaves nearly
the same as the rest, but many
browsers have bugs that cause
incompatibilities.

When writing a Web applica-
tion, it is very important to deter-
mine what browsers you want to
target. Then you must thoroughly
test your application on those
browsers. One of the biggest

Why Automated Testing
for Web Apps?
Java Champion Kevin Nilson talks about his language-agnostic testing toolset.

KEVIN NILSON
BIO

PHOTOGRAPH BY
MARGOT HARTFORD

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:kevin_nilson%40dev.java.net?subject=
javascript:openPopup('bio_p35')

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

JA
VA

 T
EC

H

36

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//rich client /

advantages of Web applications is that
you can write an application once and
have it reach a wide range of users with
no installation or configuration. Your
users can be using new or old Microsoft
Windows, Mac, Linux, or Oracle Solaris
systems, and they can even be using
mobile devices, such as iPhone, Android,
or BlackBerry.

Another challenge for many Java
developers is working with a dynamic
language, such as JavaScript, which runs
in a browser. Dynamic languages pro-
vide great flexibility and efficiency, but
they introduce the possibility of several
types of runtime bugs. Java developers
are generally accustomed to working
with static languages, such as Java, C,
and C++. With JavaScript, many bugs are

caught at runtime that would have been
caught at compile time with Java. One
simple example of such a bug would be
adding a Boolean to an integer. Another
simple example would be misspelling
a variable. Both of these bugs would
be caught by the Java compiler, which
would prevent the application from be-
ing built, but they would not be caught
with JavaScript.

What tools do you recommend using
for writing tests for Web applications?
I recommend doing static code analysis
and then writing unit and integration
tests. JSLint has been a popular tool for
years for doing static code analysis, and
it helps find problems in JavaScript code.

The Closure Compiler is a newer
tool that can be used to
compile your JavaScript
into JavaScript that will
download and run faster.
The Closure Compiler
parses JavaScript to re-
move dead code, rewrites
code, checks syntax,
checks variable refer-
ences, checks types, and
warns about common
JavaScript pitfalls.

I recommend using
QUnit and TestSwarm to
unit test and functional
test Web applications.
QUnit is the test suite
that is used by the jQuery
project to test its code
and plug-ins. TestSwarm
allows you to run your

QUnit tests in any browser that can con-
nect to the code you want to test.

Are QUnit and JUnit similar?
QUnit and JUnit are similar tools that
help you test code. JUnit has been a very
popular framework for testing Java code.
A basic JUnit test that tests the Java add
method is shown in Listing 1.

The results look like what you see in
Figure 1.

Tests in JUnit are marked by using
the annotation @Test. The class org
.junit.Assert has several static assertion
methods to help tests, such as
assertTrue, assertFalse, assertEquals,
assertNull, assertNotNull, and so on.
These assertion methods are used to
compare expected results to actual re-
sults. JUnit tests are run by developers in
their IDEs and can be run by build tools
such as Maven, Gradle, and Ant.

Listing 2 shows an example of the
same test written in QUnit to test the
add function in JavaScript.

The results look like Figure 2.
You can group tests into modules to

provide some logical separation of your

tests. Each test can contain several as-
sertions. QUnit provides assertion func-
tions such as ok, equals, notEqual, and so
on. QUnit tests are run in the browser,
and the results are shown on a Web
page. This allows you to run your QUnit
test in any browser just by typing the
URL of the test into your browser.

Writing QUnit tests can be challeng-
ing because there are no threads in
JavaScript. Often you will want to test
what happens after the user takes an ac-
tion, such as clicking a button. When the
user clicks a button, long-running tasks
and asynchronous events, such as Ajax,
might take place. This can cause prob-
lems, because the testing code executes
before the code behind the action of the
button executes. The testing code must
release the thread and re-execute later.

One way to work around this prob-
lem is to use setTimeout to schedule
your assertion after a certain amount of
time. However, even this doesn’t work
well, because your code might not be
completed when setTimeout executes.
Polling can be used to check for comple-
tion of the code you are testing. This

See all listings as text

Figure 1

Figure 2

@Test
public void testAdd() {
 int a=1;
 int b=1;

 assertEquals("one plus one is two", 2, add(a,b));
}

LISTING 1 LISTING 2

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.oracle.com/ocom/groups/public/@otn/documents/webcontent/427730.html
javascript:openPopup('p36_listing2')

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

JA
VA

 T
EC

H

37

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//rich client /

polling must also be con-
figured to time out after a
certain period.

A company called
appendTo developed
an open source jQuery
plug-in, whenAvailable,
that can be used if you
are using jQuery. The
whenAvailable plug-in
continues polling for a
Document Object Model
(DOM) element before
proceeding.

You can also use FuncUnit to help
with the challenges of functional test-
ing. FuncUnit is an add-on to QUnit that
provides functional testing capabilities.
FuncUnit exists to solve the problem of
waiting for an element to appear before
continuing your test.

How can I automate running tests in
all browsers?
TestSwarm is a Mozilla Labs project that
provides distributed continuous inte-
gration testing for JavaScript. Browsers
can connect to the TestSwarm server to
become part of the swarm of browsers
that tests will be run against.

To run a test, you submit a simple
form telling TestSwarm what tests to
run and what browsers to run the tests
in. The tests are run in an iFrame in
each browser that is part of the swarm.
Once each test is completed, the results
of the tests are sent to the TestSwarm
server. TestSwarm is a PHP application
that manages the process of telling the
connected browsers in the swarm to

run tests. The TestSwarm
server keeps track of the
results of tests that have
been run.

Most continuous inte-
gration tools for JavaScript
try to launch browsers.
TestSwarm is different
because it lets any brows-
ers on the network con-
nect to it. This provides
a great advantage when
you are trying to test
multiple browsers and

platforms. To join the swarm with your
iPhone or Android, all you need to do is
go to the Web page of the TestSwarm
server with your browser. TestSwarm
can be used to run tests written in QUnit
(jQuery), UnitTestJS (Prototype), JSSpec
(MooTools), JSUnit, Selenium, and Dojo
Objective Harness.

What tools are you using to provide
continuous integration?
I have been using Hudson/Jenkins on
GlassFish Server Open Source Edition
to trigger running tests in TestSwarm.
My team and I wrote a Hudson plug-in
to integrate Hudson with TestSwarm.
Hudson monitors my repository for code
check-ins. When a code check-in occurs,
Hudson uses the plug-in I developed
to submit a new job to TestSwarm. The
plug-in then polls TestSwarm for the
results. If there are errors in the test,
Hudson sends out an e-mail notification.

I am using Oracle VM VirtualBox to
help manage the browsers that are
connected to TestSwarm. Oracle VM

VirtualBox is used to run four operating
systems that run 10 different browsers.
Oracle VM VirtualBox has a Web Service
API that can be used to stop and start
virtual environments. My team and I
wrote another Hudson plug-in to restart
the virtual environments once a day.

Hudson provides a REST-style API that
has an XML API that shows the status
of builds. I am using Sun SPOT Java
Development Kits to poll Hudson’s XML
API. Each Sun SPOT Java Development
Kit has eight LED lights, so I can monitor
eight builds at a given time.

How difficult would it be for someone
to set up a testing environment
similar to what you have built?
It should be fairly easy to set up a similar
environment. My team and I were able
to get a basic setup going in a few days.
Over time, we have slowly added more
“nice to have” features. All the tools I am
using are free and open source.

What are some other tools that can be
used for testing Web applications?
Before I started working with QUnit
and TestSwarm, I mostly used Canoo
WebTest. Canoo WebTest allows you to
write your tests in XML or Groovy. Canoo
WebTest runs from the command line
using Rhino.

Selenium is another great tool that
has been very popular for testing Web
applications. Selenium has a click-and-
record feature that allows you to write
simple tests easily. I prefer using QUnit
because of its simplicity and power.
QUnit is a great tool for JavaScript de-

velopers. QA developers will probably be
more comfortable with Selenium.

What Java and Oracle technologies
have you been using to assist with
testing?
I am using Hudson, GlassFish
Server Open Source Edition, Oracle
VM VirtualBox, and Sun SPOT Java
Development Kits. Each of these tools
is open source and very flexible. I have
been able to integrate these tools with
other open source testing tools to pro-
vide an end-to-end automated testing
environment for Web applications. ●

LEARN MORE
•	TestSwarm

•	QUnit

•	 jQuery

•	GlassFish Server Open Source Edition

•	Sun SPOT Java Development Kit

•	 JSLint

•	Closure Compiler

•	 JUnit

•	Maven

•	Gradle

•	Ant

•	appendTo

•	FuncUnit

•	Hudson

•	 Jenkins

•	Oracle VM VirtualBox

•	Canoo WebTest

•	Rhino

•	Selenium

SCARY THOUGHT

Without automated
regression testing,
bugs will haunt you.
It is very common for
bugs that have been
fixed to come back
again later.

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/jquery/testswarm
http://docs.jquery.com/Qunit
http://jquery.com/
http://glassfish.java.net/
http://www.sunspotworld.com/
http://www.jslint.com/
http://code.google.com/closure/compiler/
http://www.junit.org/
http://maven.apache.org/
http://www.gradle.org/
http://ant.apache.org/
http://appendto.com/
http://funcunit.com/
http://hudson-ci.org/
http://jenkins-ci.org/
http://www.oracle.com/technetwork/server-storage/virtualbox/overview/index.html
http://webtest.canoo.com/webtest/manual/WebTestHome.html
http://www.mozilla.org/rhino/
http://seleniumhq.org/

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

JA
VA

 T
EC

H

38

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//enterprise java /

Should you use @Resource,
@Inject, @PersistenceContext,

or plain old Java Naming and
Directory Interface (JNDI) look-
up? Java Platform, Enterprise
Edition 6 (Java EE 6) offers
multiple possibilities for injec-
tion of configured resources,
such as a datasource, destina-
tion, Java Persistence API (JPA)
EntityManager, Java Transaction
API (JTA) UserTransaction, URL,
J2EE Connector Architecture (JCA)
connector, mail session, LDAP
connection, and even a custom
resource installed in JNDI. So why
do we need several annotations
for resource injection?

This article describes the vari-
ous annotations that are available
for resource injection with Java EE
6, why they are needed, and when
they can be used.

@Resource—The Generic JNDI
Resource Injector
The @Resource annotation is
defined in JSR-250, “Common

Annotations for the Java
Platform.” This specification also
includes other well-known anno-
tations such as @PreDestroy,
@PostConstruct, and @Roles
Allowed. While JSR-250 is required
in Java EE 5 and Java EE 6, it is
defined as an independent Java
EE specification and, thus, it can
be used by any other non-Java
EE frameworks or libraries. Some
of the JSR-250 annotations are
even packaged with Java Platform,
Standard Edition (Java SE). This is
the case for @Resource.

The @Resource annotation is
intended for injection of all re-
sources installed into the JNDI
namespace. The JNDI name is
used as an alias for the configured
resource. Usually, the specified
API will be injected as an inter-
face. JNDI decouples the user of
the resource from its actual im-
plementation and configuration.

public class
ControlWithDataSourceDI {

 @Resource(name="jdbc/sample")
 DataSource ds;
}

The name element specifies
the actual JNDI name. The data-
source in the above was config-
ured and injected with the JNDI
name jdbc/sample. Because of
the ubiquitous “Convention over
Configuration” principle in Java
EE 6, the name element does
not need to be specified. If it is
not specified, the JNDI name is
derived directly from the field
name. This would be difficult in
our case. The code would look
like @Resource DataSource jdbc/
sample, and it would not com-
pile. The change of the applica-
tion server configuration would
break the code and require the
field to be renamed. In this
particular case, it is better to
name the JNDI name explicitly.
Renaming the JNDI resource
would affect only the name ele-
ment and not the field name.

The use of mappedName
should be avoided. It is propri-
etary and depends on the ap-
plication server implementation.
Injected resources can be shared
and can be configured with the
shareable element, which is set
to true by default. Most of the
resources are either immutable
(such as injected primitive types
or injected URLs) or resource fac-
tories (such as DataSource), and
so they are shareable.

The @Resource annotation
supports field and setter injec-
tion. Field injection is leaner,
because it does not require you to
implement a superfluous setter.
Admittedly, you will need to lose
the field visibility to package vis-
ibility to allow a mock-out of the
injected class during a unit test.

@DataSourceDefinition—
A Touch of DevOps
Most of the resources are in-
stalled on applications in an
unspecified way using admin

Resource Injection with
Java EE 6
Learn about the various annotations that are available for resource injection
with Java EE 6, why they are needed, and when they can be used.ADAM BIEN

BIO

PHOTOGRAPH BY
THOMAS EINBERGER/
GETTY IMAGES

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://jcp.org/en/jsr/summary?id=250
javascript:openPopup('newbio_p38')

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

JA
VA

 T
EC

H

39

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//enterprise java /

consoles, Java Management Extensions
(JMX), command-line interfaces, or
even Representational State Transfer
(REST). A datasource, however, can be
configured in a standardized way. The
@DataSourceDefinition annotation in-
troduced with version 1.1 of the JSR-250
specification allows the configuration,
installation, and JNDI exposure of a
datasource in a portable way, as seen in
Listing 1.

One or more @DataSourceDefinition
annotations declared on a class
(potentially enclosed with
@DataSourceDefinition annotations) and
deployed with the application provide
the necessary information for auto-
matic installation. The datasource can
be injected directly by using the JNDI
name specified in the name element
with the @Resource annotation. It is also
accessible for a manual lookup. Direct
access to a datasource in a typical ap-
plication is necessary only for accessing
stored procedure invocations or specific
optimizations and is rather uncom-
mon. The vast majority of all persistence
use cases can be handled by JPA. The
JPA EntityManager, however, requires a
registered datasource with a well-known
JNDI name, configured in the persis-
tence.xml configuration file.

The majority of Java
EE applications can be
installed without any
administrative tasks with
@DataSourceDefinition. A
properly installed JDBC
driver on the server is the
only prerequisite for a suc-

cessful installation. The obvious draw-
back here is the loss of flexibility. You
need to redeploy the application for
configuration changes.

At first glance, the need to redeploy
seems like a disadvantage, but the de-
ployment of self-contained applications
is the central idea of DevOps. Here,
the operation and development of the
application are considered as a single
and consistent unit. Applications are
built, configured, and installed continu-
ously without any manual intervention.
In this scenario, there is no difference
between the application server, the
operating system configuration, and the
application code. All the information
required to install or run the application
is treated equally.

@PersistenceContext—A Special Case
@PersistenceContext was introduced
in Java EE 5 with the JPA specification
and not as part of JSR-250. Although
an EntityManager could be consid-
ered an unshareable resource (and
EntityManagerFactory could be consid-
ered a shareable resource), it cannot be
injected with the @Resource annotation
without nasty workarounds. To inject an
EntityManager with the @Resource anno-

tation, you need to register
it in the JNDI namespace
first. The registration of
EntityManager in the JNDI
namespace can be accom-
plished by applying the
@PersistenceContext annota-
tion on the class level.

The element name binds

the EntityManager to the JNDI name.
The JNDI scope is assigned by adher-
ing to a predefined naming convention.
For instance, java:comp/env exposes
the EntityManager to the component
namespace. To fetch a resource from the
local component namespace, the lookup
element from the @Resource annotation
needs to be used, as shown in Listing 2.
Also, exposure to the global JNDI
namespace (java:global) is possible.
The JNDI name must be prefixed with
java:global for this purpose. For the
injection, the name element of the
@Resource annotation can be used, as
seen in Listing 3.

After registration of the EntityManager
in the JNDI namespace, a direct lookup
with a SessionContext works as expected,
as seen in Listing 4.

For a manual lookup, the
SessionContext needs to be injected

with @Resource first. The creation of the
InitialContext with the default construc-
tor is equally possible. The EntityManager
can then be obtained with the regis-
tered JNDI name. The manual lookup
should be performed during the ini-
tialization time in the @PostConstruct
annotated method. A JNDI lookup of an
EntityManager is rarely needed in a Java
EE 6 application. An EntityManager can
be directly injected into an Enterprise
JavaBeans (EJB) 3.1 bean, as well as into
a Contexts and Dependency Injection
(CDI) managed bean. A manual lookup
might still be interesting for nonman-
aged components.

Although an EntityManager injection
works also for CDI managed beans, the
beans cannot be directly exposed to the
UI layer. The EntityManager in a state-
less environment can be configured
only with the @PersistenceContext(type=

See all listings as text

JAVA FACT

The vast majority
of all persistence
use cases can be
handled by JPA.

@DataSourceDefinition(
 className="org.apache.derby.jdbc.ClientDataSource",
 serverName="localhost",
 name="java:global/jdbc/InjectionSample",
 databaseName="InjectionSample;create=true",
 portNumber=1527,
 user="sample",
 password="sample"
)
@Stateless
public class JDBCDataSourceConfiguration {
 @Resource(lookup="java:global/jdbc/InjectionSample")
 private DataSource dataSource;
}

LISTING 1 LISTING 2 LISTING 3 LISTING 4

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.oracle.com/ocom/groups/public/@otn/documents/webcontent/427736.html
javascript:openPopup('p39_listing2')
javascript:openPopup('p39_listing3')
javascript:openPopup('p39_listing4')

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

JA
VA

 T
EC

H

40

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//enterprise java /

PersistenceContextType.TRANSACTION)
annotation, which is also the de-
fault value. Every interaction with the
EntityManager requires, therefore, an
active transaction; otherwise, a javax
.persistence.TransactionRequiredException
is thrown. Transactions cannot be
started in CDI managed beans out of
the box. An EJB 3.1 Stateless Session
Bean solves the problem in the simplest
possible way because neither manual
transaction management nor the use
of CDI extensions is required in an EJB
Stateless Session Bean. A single, no-
interface view bean, such as a facade,
manages the transactions without any
further configuration, frameworks, or
manual coding.

Why Not Just Use @Inject?
The @Inject annotation was introduced
with JSR-330 (“Dependency Injection for
Java”) and is an integral part of Java EE 6
(in fact, it’s even part of its Web Profile).
“Contexts and Dependency Injection”
(JSR-299) greatly enhances the depen-

dency injection capabilities of the Java
EE 6 platform and relies on the minimal-
istic JSR-330. Unfortunately, the plain
@Inject annotation is not suitable for
any direct resource injection. The rea-
son is the lack of elements. The name
of the field could be still leveraged as a
JNDI name. Because of naming limita-
tions in the Java language, particular
patterns, such as jdbc/sample or queue/
Orders, cannot be expressed with a field
name. Furthermore, the injection of
the EntityManager also needs additional
parameters, such as the type (transac-
tional or extended) and the name of the
persistence unit.

Nevertheless, @Inject, together with
producers and qualifiers, is an inter-
esting option for clean and flexible
resource handling. You can centralize
the creation of resources in a plain class
and inject them in a decoupled and
clean way on demand. A single resource
type could even be injected without
any qualifier. In more-sophisticated
projects, the existence of multiple

DataSource instances
or EntityManager from
different persistence
units is likely. A cus-
tom @Qualifier can
be used to match the
producer and the cor-
responding injection
point. The @Qualifier
annotation with a
meaningful name
increases the read-
ability and decreases
coupling at the same

time. The consumer is no longer depen-
dent on the JNDI name nor on the way
the resource was actually obtained.

A field or resource in an EJB bean or in
a managed bean can be used for obtain-
ing the resource and its “production”
by using @Produces at the same time.
The @Qualifier marks the producer and
the injection point. If both match, the
resource is injected. The injection would
also work with the built-in @Named
qualifier. The @Named annotation uses
a simple String for matching what is not
type-safe and could become a source of
nasty errors. A misspelled String is hard
to find in a larger code base.

The produced resource can be easily
injected into the consumer using the
@Inject and custom @Qualifier annota-
tions. A resource can be directly exposed
with a field or method. A method pro-
vides more flexibility—the returned
resource could be logged, decorated, or
even reconfigured. When using a meth-

od as a producer, you need to move the
@Produces and @Legacy (see Listing 5)
annotations from the field to a method
of your choice.

To inject a resource, only the @Inject
and @Legacy annotations are required,
as seen in Listing 6. Further configura-
tion is not needed. Also, the code be-
comes fluently readable: “Inject legacy
data source.” Because it is a matter of
moving two annotations from a field to
a “getter,” you could start with a field
and avoid unnecessary bloat. A method
producer can be introduced on demand
without affecting the consumers or
injection points.

Conclusion
Preconfigured resources installed in
JNDI are usually injected with the
@Resource annotation. The type of
resources injectable with @Resource
ranges from a String to a CORBA service,
for example, primitive types (String, long,
and so on), javax.xml.rpc.Service, javax.xml
.ws.Service, javax.jws.WebService, javax.sql
.DataSource, javax.jms.ConnectionFactory,
javax.jms.QueueConnectionFactory, javax
.jms.TopicConnectionFactory, javax.mail
.Session, java.net.URL, javax.resource

@Qualifier
@Retention(RUNTIME)
@Target({METHOD, FIELD, TYPE})
public @interface Legacy {}

See all listings as text

Adam Bien chats with Java Magazine’s Justin
Kestelyn about Java 7, a typical day, and more.

public class LegacyDataSourceProducer {
 @Produces @Legacy @Resource(name="jdbc/sample")
 private DataSource ds;
}

LISTING 5 LISTING 6

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://jcp.org/en/jsr/summary?id=330
http://jcp.org/en/jsr/summary?id=299
http://www.oracle.com/ocom/groups/public/@otn/documents/webcontent/427736.html
javascript:openPopup('p40_listing6')
javascript:var w=window.open('http://www.oraclejavamagazine-digital.com/javamagazine/misc/p40_bien_video.html','_blank','left=300,top=400,width=400,height=250;location=no');

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

JA
VA

 T
EC

H

41

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//enterprise java /

.cci .ConnectionFactory, org.omg

.CORBA_2_3 .ORB, javax.jms

.Queue, javax.jms.Topic, javax

.resource.cci.InteractionSpec, and
javax.transaction.UserTransaction.
These resources are usually
administered on the application
server in an application-agnostic
way; more than one application
could share the same resources.

The EntityManager is not reg-
istered in the JNDI namespace,
and so it is not available for
@Resource injection in a stan-
dard case. Furthermore, an
EntityManager is configured
inside an application and is
not shared with other appli-
cations. For the injection of
the EntityManager, additional
information, such as its type
and the unitName, is used.
Although an EntityManager could
be injected with @Resource or
@Inject indirectly as well, in
the vast majority of cases, a
plain @PersistenceContext an-
notation is used for this pur-
pose. The Java EE ubiquitous
principle of “Convention over
Configuration” provides suit-
able defaults. If there is only
one persistence unit, it doesn’t
need to be specified. The
EntityManager is injected with
transactional configuration
without any further ceremony.

The @Inject annotation is
not suitable for direct injec-
tion of resources from the JNDI

namespace without any
extensions or workarounds.
@Inject together with a custom
@Qualifier becomes interesting
for the injection of resources
exposed by @Produces. The cli-
ent (injection point) becomes
entirely decoupled from JNDI,
and this is also the case for any
resource creation and lookup
logic. This additional layer of
indirection is rarely needed in
typical projects, but it is very
interesting for platform, prod-
uct, or API development. In the
latter case, the user of a par-
ticular service need only use the
custom qualifier and the @Inject
annotation to get the necessary
resource injected.

The @EJB annotation can-
not be used for injection of
resources and is suitable only
for the injection of dependent
EJB beans. The old-fashioned
InitialContext#lookup is needed
only in exceptional cases where
the JNDI name is unknown at
compile time and needs to be
provided at runtime. ●

LEARN MORE
•	 JSR-317: “Java Persistence 2.0”

•	“ Contexts and Dependency
Injection in Java EE 6”

•	“ Enterprise JavaBeans 3.1 with
Contexts and Dependency
Injection: The Perfect Synergy”

•	“Simplicity by Design”

Use your QR code reader to access information about a
group trial or visit safaribooksonline.com/javamag

Learn more
about Java
technology with
Safari Books
Online

With the intelligent library in the cloud
SEARCH LESS. DEVELOP MORE.

http://oracle.com/javamagazine
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
http://jcp.org/en/jsr/summary?id=317
http://www.oracle.com/technetwork/articles/java/cdi-javaee-bien-225152.html
http://www.oracle.com/technetwork/articles/java/cdi-javaee-bien-225152.html
http://www.oracle.com/technetwork/java/ejb-3-1-175064.html
http://www.oracle.com/technetwork/issue-archive/2011/11-jan/o11java-195110.html
http://safaribooksonline.com/javamag

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

JA
VA

 T
EC

H

42

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//mobile and embedded /

The “Content Handler API
(CHAPI),” also known as JSR-

211, is one of those nifty little APIs
that doesn’t seem to do much at
first glance, but the more you look
at it, the more you realize how
useful it really is. It solves a very
specific problem, and it does that
in a clean and elegant manner.

In this article, I will help you
understand the problem domain
this API addresses and what it
does to solve the problem. I will
give you a rundown of the API’s
structure and how best to use it
in your own MIDlets. Finally, I will
show an example of how to use
this API with a simple use case.

Note: The source code that
accompanies this article can be
downloaded here.

The Problem Domain
Consider the case where you are
creating an application that will
allow budding photographers to
browse the image library within
their device, which contains im-

ages that they might have cap-
tured using their device’s camera.
Instead of using the device’s own
image browser, they can use your
nifty little app, which provides
extra tools (for example, a tool for
sharing images online, perhaps).
When users browse and want
to see an image, you want to be
able to put some copyright in-
formation on the image. Instead
of relying on the built-in image
viewing capabilities of the device
or the Java virtual machine (JVM),
you want to make sure that each
image opens in a special image
viewer that displays this copy-
right information.

In a nutshell, you want to create
a new image content handler that
can always display images with
your copyright. You could write
some tricky code. Or you could
use the Content Handler API
and register your special con-
tent handler for images with the
device’s Application Management
Software (AMS).

The Content Handler API
CHAPI provides an execution
model that allows your applica-
tions to invoke Java Platform,
Micro Edition (Java ME) and
non-Java applications. What this
means is that you register your
existing content handlers with
this API and the API allows you to
invoke them. You, of course, need
to provide some sort of identifica-
tion by which a content handler
can be invoked.

For example, let’s say you want
all JPG images to be handled by a
specific image content handler (as
discussed earlier in “The Problem
Domain”). You register
the content handler
class either through an
entry in the manifest
file or, programmatical-
ly, by notifying the AMS
that JPG MIME types
are now to be handled
by this special con-
tent handler. (If there
are multiple handlers

registered, CHAPI will pick one of
them randomly.) Identification
can be done not only by MIME
type (or content type) but also by
the URL or the content handler
ID construct. You can also regis-
ter multiple content handlers for
the same types, and then use the
actions to specify which particular
handler to invoke.

The Registry and Invocation
The Registry class, as you might
expect, is the central repository
of all known content handlers
within the Java ME environment.
It provides the lifecycle methods

of all content handlers
(namely registration
and un-registration),
providing meta infor-
mation and, of course,
providing the actual
invocation of content
handlers. Each content
handler is marked us-
ing zero or more con-
tent types (for exam-

Working with JSR-211:
Content Handler API
Learn how to use CHAPI, which solves a very specific problem in a clean and
elegant manner. VIKRAM GOYAL

BIO

LOOK DEEPER

JSR-211 is one
of those nifty
little APIs that
doesn’t seem
to do much at
first glance. PHOTOGRAPH BY

JONATHAN WOOD/
GETTY IMAGES

http://oracle.com/javamagazine
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
http://jcp.org/en/jsr/detail?id=211
http://jcp.org/en/jsr/detail?id=211
http://www.oracle.com/technetwork/java/javamagazine/content-handler-api-sample-420766.zip
http://www.oracle.com/technetwork/java/javame/index.html
http://www.oracle.com/technetwork/java/javame/index.html
mailto:tech%40craftbits.com?subject=
javascript:openPopup('newbio_p42')

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

JA
VA

 T
EC

H

43

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//mobile and embedded /

ple, image/jpeg), suffixes (for example,
.jpg), and actions (for example, open).
Of course, there is a unique ID associ-
ated with each handler, which is used to
enforce access controls.

Content handlers can
be chained through the
registry. Thus, if one
content handler can-
not complete a request,
it may invoke another
one before passing back
control to the calling (in-
voking) class. This chain-
ing behavior is handled
seamlessly by the registry.

Accessing the central
registry is done through
the static method pro-
vided by this class: getRegistry(String
classname). The class name is the name
of the content handler or the applica-
tion that will be accessing the registry
methods, and it must have been reg-
istered previously by making entries in
the Java Decompiler (JAD) file, or it can
be registered programmatically using
the register method before calling the
getRegistry method. Instead of returning
a null if the specified registry cannot be
found, the getRegistry() method throws
an IllegalArgumentException. You use the
unregister(String classname) method to
un-register a content handler or applica-
tion from the registry.

An invocation is an encapsulation of
the parameters that you might need
to pass between your application and
the content handler. This can include,
but is not limited to, the URL, the type,

the action, and the ID, plus whether a
response is required from the handler.
This encapsulation is identified in the
API with the Invocation class. I would

like to point out that
the invocation is used
not just for passing the
parameters to the con-
tent handler but also for
receiving responses from
the handler. This class
defines several handy
status flags to indicate
where a request to invoke
a content handler is at a
particular moment (for
example, OK, ACTIVE,
CANCELLED, and so on).

Once you have cre-
ated the registry and the target pa-
rameters using an invocation instance,
you need to call the registry method
invoke(Invocation invoke) to actually ini-
tiate the content handler. This method
returns a flag mustExit, which indicates
whether the calling application should
exit before the content handler itself
can start.

Thus, a sequence of events for
invoking a content handler might look
like this:
1. Register the content handler either

through JAD manifest entries or
programmatically using the register
method.

2. Access this handler’s registry by using
the getRegistry method.

3. Create an invocation request with your
parameters using the Invocation class.

4. Create the invocation using the

registry’s invoke(Invocation invocation)
method.

ContentHandler and
ContentHandlerServer
The ContentHandler and ContentHandler-
Server interfaces sit on the other side
of the fence. That is, they provide
the means to write your own con-
tent handlers. Note that you don’t
directly implement these interfaces.
Implementation of these interfaces is
provided by the device manufacturer’s
own API implementation. You use this
implementation to work on your han-
dler code.

The ContentHandler interface is a
collection of details about the registra-
tion of each content handler (which
you might have already registered).
For example, methods such as getID()
and getType() basically just provide
the details that you would have pro-
vided at registration.

The ContentHandlerServer interface
extends the ContentHandler interface
and provides methods to receive new
invocation requests, finish the pro-
cessing of these requests, and provide
other meta information. In a nutshell,
its implementation provides the life-
cycle methods for managing new in-
vocation requests. Therefore, to create
your own content handlers, you rely
on its methods to manage this life-
cycle (for example, queuing requests,
responding to new requests, chaining
requests, handling errors, and so on).
You are thus left to create the code for
your content handler, and you leave the

overhead to the interface’s implemen-
tation (provided by the device manu-
facturer’s API implementation).

RequestListener and
ResponseListener
Any implementation of a content
handler should handle the listen-
ers for when a new request is made
and when a response is requested.
These listeners are RequestListener and
ResponseListener, respectively. By imple-
menting the first interface, the content
handler provides an implementation
of the invocationRequestNotify(Content-
HandlerServer handler) method, which is
called automatically when a new re-
quest is made by a calling class (or any
other application). By implementing the
second interface, the content handler
provides an implementation of the
invocationResponseNotify(Registry regis-
try) method, which is called each time
the calling class requires a response
from the content handler.

The RequestListener interface is set
using the corresponding setListener()
method of the ContentHandlerServer
interface, while the ResponseListener
interface is set using the corresponding
setListener() method of the Registry.

AdvancedImageContentHandler:
An Example Content Handler
Implementation
Following on from the problem domain
discussed earlier, in this section I de-
scribe an example content handler that
will add a text string to the end of each
image it displays. The constructor for

FAST FACT

CHAPI and the
execution model let
an application invoke
registered Java ME and
non-Java applications
by URL, content type, or
content handler ID.

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

JA
VA

 T
EC

H

44

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//mobile and embedded /

this class is shown in Listing 1.
The AdvancedImageContentHandler

constructor uses the registry to set itself
as the listener for any responses that
might be required, and, therefore, it
implements the invocationResponse-
Notify(Registry registry) method, which is
empty in this example. Then, it locates
the ContentHandlerServer using the static
registry method getServer(String class-
name). The handler is then notified that
all new requests for content handling
are to be done by this class using the
invocationRequestNotify(ContentHandler-
Server handler) method. Finally, it sets up
the UI to display the image and the text
below it.

When a new request is initiated, the
invocationRequestNotify(ContentHandler-
Server handler) method is called, as
shown in Listing 2.

We first check whether there is an
existing request, and we let the content
handler server finish that up. Next, if
there is not an existing request, we get
the details of the new request, and we
pass the new request on to the display-
Image() method with the details.

Although fairly straightforward (in the
example shown in Listing 3), the display-
Image() method does all the magic of dis-
playing the image with the added text.

We opened up a connection to the
requested file (using the FileConnection
API), and if the image is found, we dis-
play it on the form with the added text.
We do some error checking to make sure
we can load the image, and if not, we
display a message accordingly.

On the caller’s side, it takes only a

three-step process to call this con-
tent handler, as shown in Listing 4
in the excerpt from the calling class
(CHAPIExample).

In Step 1, we create the registry using
the getRegistry(String classname) method
and pass it the class name of our content
handler, AdvancedImageContentHandler. In
Step 2, we create the data for the invoca-
tion. In the final step, we invoke the con-
tent handler using the invoke(Invocation
inv) method of the registry with the invo-
cation data we created in Step 2.

Before we can do all this, we need to
register our content handler in the JAD
file (or programmatically, as the case
may be). Our JAD file entries look like
Listing 5.

Notice the last three lines. These tell
the AMS that for the content type of
image/jpg or the .jpg extension, the
AdvancedImageContentHandler class will
be the handler. The AMS then registers
this within the registry, and this class is
available for handling open commands.

Note: When running the example code,
make sure that the images are placed in
the root folder. I used DefaultCLDCPhone1
as the emulator, and the root for that
within a Windows Vista environment
with SDK 3.0 is C:\users\username\
javame-sdk\3.0\work\devicenumber\
appdb\filesystem\root1. ●

See all listings as text

LEARN MORE
•	Read the final release of the JSR-211 API

at the Java Community Process (JCP)
Website

•	Download Java ME

public AdvancedImageContentHandler() {

 // notify the registry that this class is a listener
 registry = Registry.getRegistry(this.getClass().getName());
 registry.setListener(this);

 // now, get the handler which was registered by making entries in the JAD

 // file
 try {
 handler = Registry.getServer(CH_CLASSNAME);
 } catch (ContentHandlerException che) {
 System.err.println("Registration not done! Check JAD file");
 }

 // this class is the handler for all new requests
 handler.setListener(this);

 // setup the ui
 display = Display.getDisplay(this);
 form = new Form("Advanced Image");
 backCommand = new Command("Back", Command.BACK, 1);
 form.setCommandListener(this);
 imageItem = new ImageItem(null, null, Item.LAYOUT_CENTER, "--");

}

LISTING 1 LISTING 2 LISTING 3 LISTING 4 LISTING 5

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.oracle.com/ocom/groups/public/@otn/documents/webcontent/427749.html
http://jcp.org/en/jsr/detail?id=211
http://www.oracle.com/technetwork/java/javame/downloads/index.html
javascript:openPopup('p44_listing2')
javascript:openPopup('p44_listing3')
javascript:openPopup('p44_listing4')
javascript:openPopup('p44_listing5')

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

JA
VA

 T
EC

H

45

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//polyglot programmer /

Scala is an object-oriented
language that is interesting

for a number of reasons. Like
.NET’s F#, it is a functional and
object-oriented hybrid. It is
more statically typed than Java,
with a far more extensive type
system. It has support for func-
tion literals and closures, mixins
(called traits), properties, tail call
optimization, structural typing (a
sort of static duck typing), pat-
tern matching, new idioms for
dealing with concurrent execu-
tion, and many other features.
It is also fair to say that Scala
pushes the JVM hard, perhaps
harder than any other main-
stream language (particularly if
you consider the type system),
and this makes it an ideal spy-
glass through which to examine
how the JVM copes with tasks
that were often not even con-
ceived when it was first created.

The features I consider in this
article are
■■ Symbolic method names (fre-

quently mistaken for operator
overloading)

■■ Tail call optimization
■■ Function literals and closures
■■ Traits
■■ Implicit manifests
■■ Pattern matching

This is far from an exhaustive
list of Scala features that exceed
Java’s own feature set, but this
list is a set of the features that
push the JVM in some manner.
Some of them just work; oth-
ers run afoul of limitations that
cause the solution to be less than
ideal—but all of them work. It is
a testament to the design of the
JVM that it has held up as well as
it has against a barrage of dif-
ficult jobs it was never designed
to do.

Symbolic Method Names
It is a common misconception
that Scala has operator overload-
ing. Certainly it offers a combina-
tion of two features that make
it look that way, but the truth is

simpler and more consistent.
Infix operators. Any Scala method
that takes a single parameter may
be called in two different ways.
Listing 1 shows a simple example.

Note: In the following example
and in subsequent examples,
bold indicates Scala keywords and
italics indicates output from the
Scala shell.

In this example, we create
a java.util.ArrayList of integers.
(Scala has its own collections,
and very good ones, but more on
that later.)

Next we add the integer value
1 into the ArrayList using the add
method; this form looks just
like Java.

But then we change things up
a bit. The next line adds the inte-
ger 2 to the list, but this time, we
are using the infix operator form.
Because add takes only one pa-
rameter, we can do this in Scala.
The effect is exactly the same as
calling a.add(2); only the syntax
is different. This is the first part

Scala on the Java
Virtual Machine
What does the Scala programming language tell us about the strengths —
and limits—of the JVM?DICK WALL

BIO

The Java
Virtual Machine
When Java and the Java vir-
tual machine (JVM) made their
first appearance in the early
1990s, the concept of a virtual
machine was not new. A virtual
machine provides an execution

environment for
compiled code
that targets a
hypothetical

machine language and can span
many “real” hardware platforms
to provide a common runtime for
the compiled programs.

The virtual-machine idea
dates back to at least 1966 with
O-code (used for the language
BCPL), but over time, it gained a
reputation for slow code execu-
tion. The JVM, along with the
just-in-time
(JIT) compiler
that came with
Java 2, has mostly cleared that
speed stigma, although it con-
tinues in some quarters. What
Java and the JVM did was break
virtual machines, and managed
languages that run on top of
them, into mainstream software
development, particularly in the
enterprise space. This was never
clearer than when Microsoft
adopted the Common Language
Runtime (CLR) and .NET as its
developer strategy around 2001.

’90s
the

1966

PHOTOGRAPH BY AN NELISSEN

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:dwall%40bldc.org?subject=
javascript:openPopup('newbio_p45')

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

JA
VA

 T
EC

H

46

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//polyglot programmer /

of our apparent operator overloading
feature.
Symbolic names. Scala method and
function definition names are not lim-
ited to alphanumeric characters. In fact,
very few names are off-limits (although
you can’t use names that start with
numbers, because they are parsed as
numeric literals). A single underscore
may not be used, and both = and == are
reserved to avoid confusion, but most
other symbols can be used, as can _ and

= as long as they are not alone, as seen
in Listing 2.

ArrayBuffer is a Scala collection very
similar to ArrayList in Java; however,
it has methods with names such as
+=. There is nothing special about
these methods other than they have
symbolic rather than alphanumeric
names. In fact, the append() method on
ArrayBuffer works just as the += method
does. You can see this in the call to add
7 to the ArrayBuffer near the end of the

example. We can call
the method just as we
would call any other
method. The form
ab.+=(7) is just like
ab.append(7).

When you couple
infix operator notation
and symbolic method
names, you end up
with something that
looks a lot like opera-
tor overloading, but it
really isn’t.

Critics often say that
operator overloading
is evil, and that it has
led to all sorts of hor-
rors in languages such
as C++. While that
might be true, I would
simply ask, is it any
more wrong to have a
method called add that
deletes everything in
your collection than to
have one named + that
does the same thing?

One more note: Symbolic names are
not limited to ASCII characters either.
Mathematicians like to use Greek nota-
tion a lot. The following is perfectly
valid in both Scala and in the underly-
ing JVM:

We just created a function with the
symbolic name ∑ (sigma), which is
used in math notation to denote a sum.
We used it for exactly this purpose, to
sum a sequence of numbers (integers
in this case, but it could be made more
general). Also note the infix operator
used in the 1 to 10 expression. Before
you decide that this is unnecessary for
a programming language, why not ask
a few mathematicians what they think
of the idea?

Tail Call Optimization
Consider the following Scala code:

It is the venerable factorial function,
implemented recursively.

There are a few things to note about
the implementation:
■■ We pass an accumulator to hold on

to the current factorial value down
through the recursion.

■■ If the accumulator (acc) parameter is
not supplied, the accumulator value
defaults to 1 (the starting value).

■■ The accumulator (acc) is multiplied by
n before the recursive call to factorial.

■■ If n is less than 2, we simply return
the acc value.
We could do an implementation that

appears simpler and looks like this:

scala> def ∑(numbers: Seq[Int]) =
 numbers.sum
∑: (numbers: Seq[Int])Int
scala> ∑(1 to 10)
res16: Int = 55

def factorial(n: Int, acc: Long = 1): Long =
 if (n <= 1) acc else factorial(n - 1, acc * n)

def factorial(n: Int): Long =
 if (n <= 1) n else n * factorial(n – 1)

See all listings as text

scala> val a = new java.util.ArrayList[Int]
a: java.util.ArrayList[Int] = []

scala> a.add(1)
res0: Boolean = true

scala> a add 2
res1: Boolean = true
scala> a
res2: java.util.ArrayList[Int] = [1, 2]

LISTING 1 LISTING 2

Tail Call
Optimization
in Scala

At present, Scala’s abilities for tail call
optimization are quite limited. It works
only for a function that calls itself, not
for mutually calling functions or
more-complicated arrangements.

Because of features such as inheritance, methods must be final
or private to be optimized as well, and there are other restrictions.

Support from within the JVM for tail call optimization would
be quite helpful. While some JVM engineers claim that the
language can and should do it, and the JVM doesn’t need to be
involved, I believe the truth is a little more complicated. The JVM
has some advantages over a compiler, not the least of which is
that it has access to runtime profiling information. This is in-
formation that the JVM uses very effectively already for lots of
other optimizations. Tail call support in the JVM would enable it
to figure out whether optimization is even necessary, whether it
is possible given the classes involved, and other useful contextual
information. For example, it could find optimizations based on
the classes that are actually loaded into the running VM, rather
than optimizations based on what people might write in other
code, which is what the compiler would have to guess.

In short, while Scala might be able to do more for itself with
tail recursion, some kind of support within the JVM is likely to
make the feature even more useful and complete. The truth is
that some kind of joint effort between the compiler and the JVM
is likely to yield the best results.

scala> val a = new java.util.ArrayList[Int]
a: java.util.ArrayList[Int] = []

scala> a.add(1)
res0: Boolean = true

scala> a add 2
res1: Boolean = true
scala> a
res2: java.util.ArrayList[Int] = [1, 2]

LISTING 1 LISTING 2

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.oracle.com/ocom/groups/public/@otn/documents/webcontent/427724.html
javascript:openPopup('p46_listing2')

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

JA
VA

 T
EC

H

47

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//polyglot programmer /

Indeed, this is pretty much the math-
ematical definition of factorial, but there
is a reason we don’t go with the simpler-
looking one.

In the first version, by putting the mul-
tiplication in the parameter list for the
recursive method call, the multiplication
of the accumulator by n happens before
the recursive call to factorial. In the sec-
ond version, the recursive call must be
evaluated first, and then the multiplica-
tion by n is carried out after that.

This puts the recursive call in the first
example into something that function-
al programmers call the “tail” position,
as in, it is the last thing that the func-
tion does.

Scala can then turn the recursive
function into a looped one automati-
cally. Because the last thing the function
does is call itself, the whole thing can be
looped, and this means a lot less work
for the runtime. Recursion, while very
clever, carries some fairly heavy over-
head. Stack frames must be created for
each call, and the stack can overflow if
the recursion is deep enough. Beyond
that, the JVM can do a lot to optimize
looped code (tricks such as inlining,
variable and register optimization, and
so on), but the JVM doesn’t always get a
chance to do this with recursive code.

Function Literals and Closures
Much has been said about the inclusion
of closures in the Java language, both
for and against. It seems fairly certain
that closures and function literals will be
included in Java 8, but that is still a year
or two away.

In the meantime, many (if not most)
leading alternative languages for the JVM
include function literals and closures.

You might have noticed that I keep
referring to function literals as a concept
distinct from a closure. It is. A closure is
a kind of function literal that encloses
some values or variables from the sur-
rounding scope.

When either of these is needed in
Java, inner or anonymous inner classes
provide the same features. These work,
but there is a lot of boilerplate code
involved, and it often ends up being
too much extra code to make the effort
worthwhile. For example, this is a simple
function literal in Scala:

This would expand to enough code in
Java using an anonymous inner class that
most developers would just fall back on
a for loop to do the same operation. Of
course, then you have to create another
list to hold the results, and code to add
the results (or you change the values in
place in the list). All of these alternatives
have their own costs, either more code or
mutable state (which eventually might
lead to problems in concurrent systems).

The use of Java anonymous inner
classes to do what a function literal or
closure would do is significant, because
that’s how they are implemented in
Scala. This leads to quite an explosion
of classes being generated when you

compile a Scala file (each
closure gets its own class
generated). It is possible
that the method handles
being added into JDK 7
could help reduce the
number of extra class files
that are generated, and
it might speed up com-
pilation as well as reduce
the size of the compiled
binaries.

On the other hand, this
is an area where the JVM
delivers fairly well right
now. The biggest liability
with closures in alterna-
tive languages is that there
is currently no standard
approach, so Scala clo-
sures are not likely to be
compatible with Groovy
closures or JRuby closures.
Perhaps when closures are
available in Java 8, that will
be the standard to which
all other implementations
will adhere.

Traits
Java bucked the trend
toward multiple inheri-
tance when it came out.
Multiple inheritance is
very powerful, but it brings
some issues along, such
as which method in which
superclass is actually being
referred to (the diamond
inheritance problem).

scala> val primes = List(2,3,5,7,11,13)
primes: List[Int] = List(2, 3, 5, 7, 11, 13)
scala> primes.map(n => n * 3)
res0: List[Int] = List(6, 9, 15, 21, 33, 39)

Comparing
CLR to
the JVM

It is interesting to compare Micro-
soft’s CLR to the JVM. From the
start, CLR was intended to be
source-language agnostic, and it
was launched with a variety of

supported source code languages, including C#, J# (a
Java-like language), and VB.NET. Since then, a number of
third-party source language options, such as Iron Python
and Iron Ruby, as well as new Microsoft-supported
languages, such as F#, have been added. The JVM, by
contrast, has always concentrated on supporting the Java
programming language first and foremost, but this has
not stopped other languages from targeting the JVM.

In fact, the JVM has many different source languages
that target its bytecode execution, drawn by the prom-
ise of easy cross-platform support and a runtime that is
installed on a large number of machines and devices. Robert
Tolksdorf and his group, is-research, have long provided an
exhaustive list of hundreds of languages targeting the JVM.

Although there are many languages running on the
JVM, not all of them do well with the limitations of the
JVM, which was not designed to support the wide di-
versity of language features that the union of all these
languages represents.

The most successful languages tend to work well with
the features that the JVM provides, and they find clever
ways to work around some of the limitations. Many of
these languages have started to move to the forefront of
the new generation of languages for the JVM.

These languages include Ruby (JRuby), Python
(Jython), Mirah (like Ruby with static typing), Clojure,
Groovy, Fantom, and others.

However, the language this article focuses on is
called Scala. It is the brainchild of Martin Odersky, who
has an intimate knowledge of the JVM and the Java
language. In fact, the javac compiler used for Java 1.3
was based on Odersky’s GJ compiler. GJ was an experi-
ment to extend the type system in Java with generics
(although Odersky is always quick to point out that
wildcards were not his idea).

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.is-research.de/info/vmlanguages/category/jvm-language/

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

JA
VA

 T
EC

H

48

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//polyglot programmer /

Java made a restriction that there
could be only one superclass for any
class, but there could be many inter-
faces implemented by each new class
defined, and that would give many of
the benefits of polymorphism without
the associated issues.

In the time since Java was created
(and even in some cases before that),
another strategy known as mixins pro-
vided a safer alternative to full multiple
inheritance. Mixins are like Java inter-
faces that can still have behavior defined
on them. Any given class still has only
one actual superclass, but it can also mix
in other, richer aspects, providing more
value than just interface definitions
(which then need to be satisfied with
code implementations).

Scala calls these traits, and it has good
support for them. Surprisingly, they
work just fine in the JVM, even though
the JVM was never designed to support
them. Behind the scenes, both an inter-
face and a class with the behavior and
state necessary are created when you
define a trait, and a clever hookup by the
compiler makes the whole thing work
pretty well. Listing 3 shows an example
of traits in Scala.

And here’s an example of use:

The class Frog has only one actual
superclass, but it mixes in the Green and
HasLegs traits. The HasLegs trait brings
with it the need to supply a number of
legs before the class can be instantiated,
so this is filled in when we define the
Frog class.

Traits are a fantastic feature in Scala,
and they lead to a lot more reuse than
is generally possible in Java. They can
also be used for a lot of things that you
rely on annotations and an annotation
processor to do in Java.

They already work pretty well with the
JVM. Perhaps some improvements might
be possible through the method handle
features coming in Java 7 and Java 8, and
perhaps support for interface injection
would simplify the job for the Scala com-
piler, but even without these, the JVM
handles traits and mixins just fine.

Implicit Manifests
The final features we are going to look
at in this article are, on the surface, not
apparently linked. In fact, they are linked
by a JVM shortcoming: type-safe erasure
and the lack of reified types.

When Java was first created, it had
a rich set of collections (a novelty for a
language at the time, when it was con-
sidered normal to write your own col-
lections or buy a library such as Rogue
Wave in C++). The problem was that
while Java was strongly typed, collections
ignored the type, so when you asked
for an ArrayList you got an ArrayList that
could hold anything. Until generics were
added in Java 5, you had to test and/or
cast the type of objects you got out of a

collection before you could use them as
that type.

When generics were added, it was
suddenly possible for the compiler to
check and enforce type safety on collec-
tions, and to handle the checking and
casting of types for you. This was a big
step forward for code reliability (fewer
class cast exceptions) and readability (in
most cases). However, to maintain back-
ward compatibility with code running
against older collections without gener-
ics defined in the code, it was decided
that generics would just be a compiler
“fiction,” and that the type information
would be erased in the collection, rather
than stored there.

Generics in Java were a big leap for-
ward, but developers still run into all
sorts of irritations because of this era-
sure of type information. You cannot tell

at runtime what the generic type of an
entire collection is; instead, you have to
check the individual objects after you
have retrieved them. If the compiler has
the information, everything is great, but
if not, you are forced back to the bad old
days of check and cast.

An often-seen workaround in Java is
for library or collection writers to have a
parameter be passed in that contains
a class reference to the class that will
be stored, or is stored, or is requested
in a method.

Scala has a feature to ease this pain.
It is the concept of an implicit manifest.
Listing 4 shows an example.

When the compiler sees an implicit
manifest such as this on a generic func-
tion or class definition, it automatically
adds the class of the generic in question
for that second parameter list. So, as a

scala> val kermit = new Frog
kermit: Frog = Frog@1dfe1a
scala> kermit.move
I move using 4 legs
scala> kermit.color
res2: java.lang.String = Green
scala> kermit.swims
res3: Boolean = true

See all listings as text

abstract class Amphibian {
 def color: String
 def swims = true
 def breathes = true
}
trait Green {
 def color = "Green"
}
trait HasLegs {
 def legs: Int
 def move = println("I move using %d legs".format(legs))
}
class Frog extends Amphibian with Green with HasLegs {
 val legs = 4
}

LISTING 3 LISTING 4

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.oracle.com/ocom/groups/public/@otn/documents/webcontent/427724.html
javascript:openPopup('p48_listing4')

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

JA
VA

 T
EC

H

49

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//polyglot programmer /

caller, you no longer have to supply the
class explicitly in cases where you might
need it in the function or class.

This partially works around the era-
sure of types, and it is good enough for
maybe 80 percent of times you run into
problems, but it is still not a complete
solution. The issue is really highlighted
by another feature of Scala.

Pattern Matching
Scala’s pattern matching feature is ex-
tremely powerful and flexible. It looks a
bit like a switch statement in Java, but in
fact, it can do almost anything you can
think of. This is not a surprise, because
pattern matching is a cornerstone fea-
ture of many functional languages, such
as Haskell and Erlang.

In Scala, patterns can be matched for
literals, just as in Java, and also for ob-
jects. Strings work fine, but so do classes
(particularly case classes
that are intended to be
used with pattern match-
ing, but any class can be
disassembled to its com-
ponents and used in a
pattern match with a little
effort). Collections also
may be matched, and this
is an area where type-safe
erasure once again rears
its head.

For example, take a
look at Listing 5.

It’s a bit of a contrived
example, but in fact, this
limitation really does
spring up quite a lot in

practice. And in fact, it’s not just lists or
collections, but any kind of genericized
class that you see the issue with.

Listing 5 defined a function called
sumItUp, which takes a List of Any. (Any
means any type can be in the list; it’s a bit
like Object in Java except it also includes
all scalar types, such as int and double.)

Our implementation is simple enough.
We are only worried about two types of
lists (for now). If the list contains inte-
gers, we want to sum them up. If it con-
tains strings, we want to convert them to
integer values and then sum those. For
anything else, we just return 0.

When we define the function, we get
a warning about unchecked types. This
is our first indication that something is
not right.

When we try to use the function, it
seems to work at first. If we supply a
list of int values, we get back a sum of

those. Everything seems
great until we try a list
of strings. Then, we get
a class cast exception,
but why?

The problem is that
because of type-safe
erasure, the JVM can’t
tell us what kind of type
is stored in the collec-
tion. The only way to tell
is to examine each ele-
ment individually. Scala
believes that we know
what we are doing, so it
lets us tell it that List is a
list of integers in the first
case, and it narrows the

list to integers for us as a convenience.
The problem is that when a list of strings
comes in, Scala can’t tell that apart from
the list of integers, so it just narrows the
list to a list of integers again. As soon as
we try to use any of the contents, we get
a class cast exception.

The “unchecked” warning from Scala
is actually telling us exactly that, but
because it is convenient to be able to
narrow the types if you know the list
can only be a list of integers, Scala
doesn’t enforce a compile error; it just
issues the warning.

In fact, there is no way to be able to
tell a list of int from a list of String at the
collection level, and there will never be
unless reified types are added to the JVM
(so that collections can actually report
back what they are storing).

There are workarounds that can be

used, but they usually involve nest-
ing matches inside one another, as in
Listing 6.

Now, after we match a list of anything
(the underscore matches any contained
type, and this is the correct way to match
a generic container if there is any doubt
as to its contents), we then can match
each element in turn, and convert the
value to an integer. The values are then
summed. Our new implementation has
the advantage of being able to sum a
mix of integers and strings, but it is still
a workaround, and we might want to
enforce the homogeneity of the list. In
that case, we have to do even more work
to make it safe.

There are other areas where type-
safe erasure hurts Scala develop-
ers, but this is one of the most easily
demonstrated.

See all listings as text

scala> def sumItUp(list: List[Any]): Int = list match {
 | case listOfInts: List[Int] => listOfInts.sum
 | case listOfStrings: List[String] =>
 | listOfStrings.map(_.toInt).sum
 | case _ => 0
 | }
warning: there were unchecked warnings; re-run with -unchecked for details
scala> sumItUp(List(1,2,3))
res8: Int = 6
scala> sumItUp(List("1","2","3"))
java.lang.ClassCastException: java.lang.String cannot be cast to java.lang.Integer

LISTING 5 LISTING 6

PAINKILLER

Generics in Java were a
big leap forward, but
developers still run into
all sorts of irritations
because of this erasure
of type information. You
cannot tell at runtime
what the generic type
of an entire collection
is. Scala has a feature to
ease this pain.

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.oracle.com/ocom/groups/public/@otn/documents/webcontent/427724.html
javascript:openPopup('p49_listing6')

//polyglot programmer /

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

JA
VA

 T
EC

H

50

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

Conclusion
The JVM is already flexible be-
yond the requirements of the
Java language. Support for rich
symbolic method names be-
yond what is allowed by the
Java language, and the addition
of InvokeDynamic and method
handles, already provides a wel-
come to other languages beyond
what they might have a right to
expect from a virtual machine
that was written to serve one lan-
guage above all others. It is clear,
though, that there are still desir-
able features that would make
the JVM even better for alterna-
tive languages.

In an ideal world, perhaps we
will see a JVM with reified types,
tail call optimization, interface
injection, and other features not
covered here that might help
Scala or other JVM languages
flourish; work faster, more con-
sistently, and more concisely;
and push the boundaries of what
is possible even further.

In reality, if these features
are added, it is likely to take a
while for them to make it to the
general releases of the JVM, and
it is likely to take even longer
for languages to switch to us-
ing those features exclusively
if they want to support earlier
versions of the JVM for a while.
Just because method handles are
available in Java 7 doesn’t mean
inner classes can immediately be

replaced, because to do so would
make Scala or other languages
immediately incompatible with
the earlier JVM, and perhaps not
everyone is willing to switch to
JDK 7 right away.

However, the growing mo-
mentum of JVM improvements
speaks well for future support of
alternative languages on the JVM.
In the meantime, we can at least
look forward to Java closures
and function literals in JDK 8,
and with luck, that will provide a
standard for closures that all lan-
guages can agree on and allow
better interoperability among all
languages on the platform.

And in the meantime, until
some of the more-advanced fea-
tures are added, I have no doubt
that the creators of alternative
languages for the JVM will refuse
to be held back by the limitations
and will find clever ways around
the issues, even if the work-
arounds are less than perfect. ●

LEARN MORE
•	Scala Website

•	The Da Vinci Machine Project

•	Project Lambda

•	More on Scala types and erasure

•	Listen to Java Posse podcasts

•	Download Scala

•	Get Scala training

•	 Programming	in	Scala,	Second	
Edition	(Artima, 2010)

Register Now

SAVE $400
With Early Registration

Copyright © 2011, Oracle and/or its affiliates. All rights reserved.

Go to: oracle.com/javaone
Register using keyword JDM009

Diamond Sponsors Silver Sponsor

October 2–6, 2011
San Francisco

http://oracle.com/javamagazine
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
http://www.scala-lang.org/
http://openjdk.java.net/projects/mlvm/
http://openjdk.java.net/projects/lambda/
http://programming-scala.labs.oreilly.com/ch12.html
http://www.javaposse.com/
http://www.scala-lang.org/downloads
http://www.artima.com/shop/stairway_to_scala
http://www.artima.com/shop/programming_in_scala_2ed
http://www.artima.com/shop/programming_in_scala_2ed
http://oracle.com/javaone

Your Destination for Java Expertise

Java: The Complete
Reference, Eighth Edition

Herb Schildt

A fully updated edition of the
definitive guide for Java programmers

Available in print and e-book formats @OraclePress
Join the Oracle Press Community at

www.OraclePressBooks.com

Java: A Beginner’s
Guide, Fifth Edition

Herb Schildt

Essential Java programming
skills made easy

Java Programming

Poornachandra Sarang

Learn advanced skills from
 an internationally renowned
Java expert

Written by leading technology professionals, Oracle Press books offer
the most definitive, complete, and up-to-date coverage of Oracle

products and technologies—including the latest Java release.

Acclaimed
programming author
Herb Schildt’s books
have sold more than

3.5 million copies
worldwide

http://www.oraclepressbooks.com
http://www.twitter.com/oraclepress

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

JA
VA

 T
EC

H

52

CO
M

M
UN

IT
Y

JA
VA

 IN
 A

CT
IO

N
AB

OU
T

US

blog

//fix this /

GOT THE ANSWER?
E-mail it to us here.
Answers will be posted next issue.

Contexts and Dependency Injection (CDI) is a
new specification in the Java EE 6 platform.
It provides standards-based type-safe
dependency injection for your Web applications.
The CDI unifies JSF and EJB programming
models and bridges the gap between the Web
and the transactional tier by allowing an EJB
to be used as a JSF backing bean.

1 THE PROBLEM

Welcome to the first edition of Fix This.
The idea of this section is to challenge your
coding skills. In each issue, we will publish a code
brainteaser. In the following issue, we will let you
know what the right answer was and why. We'll

also share what percentage of submitters gave what answer so
you can see how you fared against other submitters. Our first
submission is from Arun Gupta, Java evangelist at Oracle.

2 THE CODE

PHOTOGRAPH BY MARGOT HARTFORD
ART BY I-HUA CHEN

Consider the following code fragment for a JSF backing bean:
@Named @Stateless
public class MyBean {
 public void save() {
 // business logic to persist to database
 }
}

The WAR structure looks like this:
WEB-INF/classes
 /MyBean
index.xhtml

3 WHAT S THE FIX?
@Named allows the bean to be accessible in the .xhtml file for a
JSF page as an Expression Language #{myBean.save}. Why can't the
EJB be injected in the JSF page?
1) EJBs must be packaged in a JAR or EAR file to enable injection.
2) “beans.xml” is required to enable injection.
3) The business methods of an EJB must have ActionEvent as the

parameter in order to be invoked.
4) CDI injection is not available from spec-defined classes.

Hint: This is the most
common error when
building CDI-enabled
applications.

http://oracle.com/javamagazine
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /////////////////////////////////////// PREMIERE ISSUE 2011

JA
VA

 T
EC

H
CO

M
M

UN
IT

Y
JA

VA
 IN

 A
CT

IO
N

AB
O

U
T

U
S

blog

EDITORIAL
Editor in Chief
Justin Kestelyn
Senior Managing Editor
Caroline Kvitka
Community Editors
Cassandra Clark, Sonya Barry,
Yolande Poirier
Java in Action Editor
Michelle Kovac
Technology Editors
Janice Heiss, Tori Wieldt
Contributing Writer
Kevin Farnham
Contributing Editors
Blair Campbell, Claire Breen, Karen Perkins

DESIGN
Senior Creative Director
Francisco G Delgadillo
Design Director
Richard Merchán
Contributing Designers
Chris Strach, Jaime Ferrand
Production Designer
Sheila Brennan

PUBLISHING
Publisher
Jeff Spicer
Production Director and
Associate Publisher
Jennifer Hamilton +1.650.506.3794
Senior Manager, Audience Development
and Operations
Karin Kinnear +1.650.506.1985

ADVERTISING SALES
Associate Publisher
Kyle Walkenhorst +1.323.340.8585
Northwest and Central U.S.
Tom Cometa +1.510.339.2403
Southwest U.S. and LAD
Shaun Mehr +1.949.923.1660
Northeast U.S. and EMEA/APAC
Mark Makinney +1.805.709.4745
Mailing-List Rentals
Contact your sales representative.

RESOURCES
Oracle Products
+1.800.367.8674 (U.S./Canada)
Oracle Services
+1.888.283.0591 (U.S.)

Oracle Press Books
oraclepressbooks.com

ARTICLE SUBMISSION
If you are interested in submitting an article, please e-mail the editors.

SUBSCRIPTION INFORMATION
Subscriptions are complimentary for qualified individuals who complete the
subscription form.

MAGAZINE CUSTOMER SERVICE
java@halldata.com Phone +1.847.763.9635

PRIVACY
Oracle Publishing allows sharing of its mailing list with selected third parties. If you prefer
that your mailing address or e-mail address not be included in this program, contact
Customer Service.

Copyright © 2011, Oracle and/or its affiliates. All Rights Reserved. No part of this publication may be reprinted or other wise
reproduced without permission from the editors. JAVA MAGAZINE IS PROVIDED ON AN “AS IS” BASIS. ORACLE EXPRESSLY
DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS OR IMPLIED. IN NO EVENT SHALL ORACLE BE LIABLE FOR ANY
DAMAGES OF ANY KIND ARISING FROM YOUR USE OF OR RELIANCE ON ANY INFORMATION PROVIDED HEREIN. The
information is intended to outline our general product direction. It is intended for information purposes only, and may not be
incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied
upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s
products remains at the sole discretion of Oracle. Oracle and Java are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

Java Magazine is published bimonthly with a free subscription price by
Oracle, 500 Oracle Parkway, MS OPL-3C, Redwood City, CA 94065-1600.

Digital Publishing by Texterity

Copyright © 2011, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates.

 Learn Java 7
From the Source

—Oracle University—

 New Java SE 7 Training

 Engineering-Developed Courseware

 Taught by Oracle Experts

 100% Student Satisfaction Program

Click for Details, Dates, and to Register

http://oracle.com/javamagazine
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://blogs.oracle.com/java
http://www.twitter.com/java
https://www.facebook.com/ilovejava
http://www.oracle.com/technetwork/java/index.html
http://java.net
mailto:jennifer.hamilton%40oracle.com?subject=
mailto:karin.kinnear%40oracle.com?subject=
mailto:kyle%40sprocketmedia.com?subject=
mailto:thomas.cometa%40sbcglobal.net?subject=
mailto:shaun%40sprocketmedia.com?subject=
mailto:mark.makinney%40sprocketmedia.com?subject=
http://oraclepressbooks.com
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle-sub.halldata.com/site/ORA000263JFnew/init.do?&PK=NAFORJ
mailto:java%40halldata.com?subject=
mailto:java%40halldata.com?subject=
http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=402&p_nl=JJAV&p_key=Java_Training&sc=WWOU11042412MPP012C007

	Table of Contents
	COMMUNITY
	From the Editor
	Java Nation

	JAVA IN ACTION
	Interactive TV Takes Off with Java
	Sold on Java

	JAVA TECH
	New to Java
	Getting Your Feet Wet
	Introduction to RESTful Web Services

	Java Architect
	Showtime! Java 7 Is Here
	JDK 7 Will Change the Way You Write Code—Today!
	Dynamically Typed Languages and the Invokedynamic Instruction

	Rich Client
	Using Adobe Flex and JavaFX with JavaServer Faces 2.0
	Why Automated Testing for Web Apps?

	Enterprise Java
	Resource Injection with Java EE 6

	Mobile and Embedded
	Working with JSR-211: Content Handler API

	Polyglot Programmer
	Scala on the Java Virtual Machine

	Fix This

